Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's go through the problem step by step to determine the validity of Trish's and Demetri's claims.
### Step 1: Identify the Slope of the Given Line
The equation provided is [tex]\( y - 3 = -(x + 1) \)[/tex].
This equation is in point-slope form of a line: [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( m \)[/tex] is the slope.
From the given equation, we observe:
[tex]\[ y - 3 = -1(x + 1) \][/tex]
The slope [tex]\( m \)[/tex] here is [tex]\(-1\)[/tex].
### Step 2: Slope of Parallel Lines
Lines that are parallel to each other have the same slope. Therefore, any line parallel to [tex]\( y - 3 = -(x + 1) \)[/tex] will also have a slope of [tex]\(-1\)[/tex].
### Step 3: Trish's Line
Trish suggests the parallel line is:
[tex]\[ y - 2 = -1(x - 4) \][/tex]
This equation is also in point-slope form, where:
- The slope [tex]\( m \)[/tex] is [tex]\(-1\)[/tex],
- The line passes through the point [tex]\((4, 2)\)[/tex].
Let's rewrite it in slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y - 2 = -1(x - 4) \][/tex]
[tex]\[ y - 2 = -x + 4 \][/tex]
[tex]\[ y = -x + 6 \][/tex]
### Step 4: Demetri's Line
Demetri suggests the parallel line is:
[tex]\[ y = -x + 6 \][/tex]
We need to verify whether this line passes through the point [tex]\((4, 2)\)[/tex].
### Step 5: Check if Demetri's Line Passes Through the Point [tex]\((4, 2)\)[/tex]
Substitute [tex]\( x = 4 \)[/tex] into Demetri's equation:
[tex]\[ y = -4 + 6 \][/tex]
[tex]\[ y = 2 \][/tex]
Indeed, [tex]\( y = 2 \)[/tex] when [tex]\( x = 4 \)[/tex], so his line correctly passes through the point [tex]\((4, 2)\)[/tex].
### Conclusion
Both Trish's and Demetri's lines have the correct slope of [tex]\(-1\)[/tex] and pass through the point [tex]\((4, 2)\)[/tex].
Therefore, the correct answer is:
Both students are correct; the slope should be -1, passing through [tex]\((4,2)\)[/tex] with a [tex]\( y \)[/tex]-intercept of 6.
### Step 1: Identify the Slope of the Given Line
The equation provided is [tex]\( y - 3 = -(x + 1) \)[/tex].
This equation is in point-slope form of a line: [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( m \)[/tex] is the slope.
From the given equation, we observe:
[tex]\[ y - 3 = -1(x + 1) \][/tex]
The slope [tex]\( m \)[/tex] here is [tex]\(-1\)[/tex].
### Step 2: Slope of Parallel Lines
Lines that are parallel to each other have the same slope. Therefore, any line parallel to [tex]\( y - 3 = -(x + 1) \)[/tex] will also have a slope of [tex]\(-1\)[/tex].
### Step 3: Trish's Line
Trish suggests the parallel line is:
[tex]\[ y - 2 = -1(x - 4) \][/tex]
This equation is also in point-slope form, where:
- The slope [tex]\( m \)[/tex] is [tex]\(-1\)[/tex],
- The line passes through the point [tex]\((4, 2)\)[/tex].
Let's rewrite it in slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y - 2 = -1(x - 4) \][/tex]
[tex]\[ y - 2 = -x + 4 \][/tex]
[tex]\[ y = -x + 6 \][/tex]
### Step 4: Demetri's Line
Demetri suggests the parallel line is:
[tex]\[ y = -x + 6 \][/tex]
We need to verify whether this line passes through the point [tex]\((4, 2)\)[/tex].
### Step 5: Check if Demetri's Line Passes Through the Point [tex]\((4, 2)\)[/tex]
Substitute [tex]\( x = 4 \)[/tex] into Demetri's equation:
[tex]\[ y = -4 + 6 \][/tex]
[tex]\[ y = 2 \][/tex]
Indeed, [tex]\( y = 2 \)[/tex] when [tex]\( x = 4 \)[/tex], so his line correctly passes through the point [tex]\((4, 2)\)[/tex].
### Conclusion
Both Trish's and Demetri's lines have the correct slope of [tex]\(-1\)[/tex] and pass through the point [tex]\((4, 2)\)[/tex].
Therefore, the correct answer is:
Both students are correct; the slope should be -1, passing through [tex]\((4,2)\)[/tex] with a [tex]\( y \)[/tex]-intercept of 6.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.