Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the necessary criteria for a line to be perpendicular to a given line and have the same [tex]\( y \)[/tex]-intercept, let's dissect the problem step-by-step.
1. Identify the Slope of the Given Line:
- The original line we are considering has a slope of [tex]\(-\frac{3}{2}\)[/tex] (slope [tex]\( m = -\frac{3}{2}\)[/tex]).
2. Find the Slope of the Perpendicular Line:
- The slope of a line perpendicular to another line is the negative reciprocal of the slope of the original line.
- Therefore, the slope [tex]\(m_p\)[/tex] of the perpendicular line is:
[tex]\[ m_p = -\frac{1}{m} = -\frac{1}{-\frac{3}{2}} = \frac{2}{3} \][/tex]
3. Check the [tex]\( y \)[/tex]-intercept:
- The given line passes through the point [tex]\((0, 2)\)[/tex], so its [tex]\( y \)[/tex]-intercept is 2.
4. Verify Other Lines:
- Now, we need to check each of the given lines to see if their slope is [tex]\(\frac{2}{3}\)[/tex] and if they pass through the [tex]\( y \)[/tex]-intercept 2.
- Line 1: Slope [tex]\( -\frac{3}{2} \)[/tex] and point [tex]\( (0, 2) \)[/tex]
- Slope does not match the required [tex]\(\frac{2}{3}\)[/tex].
- Line 2: Slope [tex]\( -\frac{2}{3} \)[/tex] and point [tex]\( (0, -2) \)[/tex]
- Slope does not match the required [tex]\(\frac{2}{3}\)[/tex] and the [tex]\( y \)[/tex]-intercept is incorrect.
- Line 3: Slope [tex]\( \frac{3}{2} \)[/tex] and point [tex]\( (0, 2) \)[/tex]
- Slope does not match the required [tex]\(\frac{2}{3}\)[/tex].
- Line 4: Slope [tex]\( -\frac{3}{2} \)[/tex] and point [tex]\( (0, -2) \)[/tex]
- Slope does not match the required [tex]\(\frac{2}{3}\)[/tex] and the [tex]\( y \)[/tex]-intercept is incorrect.
Given this analysis, none of the provided lines meet the necessary criteria of having a perpendicular slope of [tex]\(\frac{2}{3}\)[/tex] and the same [tex]\( y \)[/tex]-intercept of 2.
Therefore, the answer is no line from the given options meets the criteria.
1. Identify the Slope of the Given Line:
- The original line we are considering has a slope of [tex]\(-\frac{3}{2}\)[/tex] (slope [tex]\( m = -\frac{3}{2}\)[/tex]).
2. Find the Slope of the Perpendicular Line:
- The slope of a line perpendicular to another line is the negative reciprocal of the slope of the original line.
- Therefore, the slope [tex]\(m_p\)[/tex] of the perpendicular line is:
[tex]\[ m_p = -\frac{1}{m} = -\frac{1}{-\frac{3}{2}} = \frac{2}{3} \][/tex]
3. Check the [tex]\( y \)[/tex]-intercept:
- The given line passes through the point [tex]\((0, 2)\)[/tex], so its [tex]\( y \)[/tex]-intercept is 2.
4. Verify Other Lines:
- Now, we need to check each of the given lines to see if their slope is [tex]\(\frac{2}{3}\)[/tex] and if they pass through the [tex]\( y \)[/tex]-intercept 2.
- Line 1: Slope [tex]\( -\frac{3}{2} \)[/tex] and point [tex]\( (0, 2) \)[/tex]
- Slope does not match the required [tex]\(\frac{2}{3}\)[/tex].
- Line 2: Slope [tex]\( -\frac{2}{3} \)[/tex] and point [tex]\( (0, -2) \)[/tex]
- Slope does not match the required [tex]\(\frac{2}{3}\)[/tex] and the [tex]\( y \)[/tex]-intercept is incorrect.
- Line 3: Slope [tex]\( \frac{3}{2} \)[/tex] and point [tex]\( (0, 2) \)[/tex]
- Slope does not match the required [tex]\(\frac{2}{3}\)[/tex].
- Line 4: Slope [tex]\( -\frac{3}{2} \)[/tex] and point [tex]\( (0, -2) \)[/tex]
- Slope does not match the required [tex]\(\frac{2}{3}\)[/tex] and the [tex]\( y \)[/tex]-intercept is incorrect.
Given this analysis, none of the provided lines meet the necessary criteria of having a perpendicular slope of [tex]\(\frac{2}{3}\)[/tex] and the same [tex]\( y \)[/tex]-intercept of 2.
Therefore, the answer is no line from the given options meets the criteria.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.