Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the necessary criteria for a line to be perpendicular to a given line and have the same [tex]\( y \)[/tex]-intercept, let's dissect the problem step-by-step.
1. Identify the Slope of the Given Line:
- The original line we are considering has a slope of [tex]\(-\frac{3}{2}\)[/tex] (slope [tex]\( m = -\frac{3}{2}\)[/tex]).
2. Find the Slope of the Perpendicular Line:
- The slope of a line perpendicular to another line is the negative reciprocal of the slope of the original line.
- Therefore, the slope [tex]\(m_p\)[/tex] of the perpendicular line is:
[tex]\[ m_p = -\frac{1}{m} = -\frac{1}{-\frac{3}{2}} = \frac{2}{3} \][/tex]
3. Check the [tex]\( y \)[/tex]-intercept:
- The given line passes through the point [tex]\((0, 2)\)[/tex], so its [tex]\( y \)[/tex]-intercept is 2.
4. Verify Other Lines:
- Now, we need to check each of the given lines to see if their slope is [tex]\(\frac{2}{3}\)[/tex] and if they pass through the [tex]\( y \)[/tex]-intercept 2.
- Line 1: Slope [tex]\( -\frac{3}{2} \)[/tex] and point [tex]\( (0, 2) \)[/tex]
- Slope does not match the required [tex]\(\frac{2}{3}\)[/tex].
- Line 2: Slope [tex]\( -\frac{2}{3} \)[/tex] and point [tex]\( (0, -2) \)[/tex]
- Slope does not match the required [tex]\(\frac{2}{3}\)[/tex] and the [tex]\( y \)[/tex]-intercept is incorrect.
- Line 3: Slope [tex]\( \frac{3}{2} \)[/tex] and point [tex]\( (0, 2) \)[/tex]
- Slope does not match the required [tex]\(\frac{2}{3}\)[/tex].
- Line 4: Slope [tex]\( -\frac{3}{2} \)[/tex] and point [tex]\( (0, -2) \)[/tex]
- Slope does not match the required [tex]\(\frac{2}{3}\)[/tex] and the [tex]\( y \)[/tex]-intercept is incorrect.
Given this analysis, none of the provided lines meet the necessary criteria of having a perpendicular slope of [tex]\(\frac{2}{3}\)[/tex] and the same [tex]\( y \)[/tex]-intercept of 2.
Therefore, the answer is no line from the given options meets the criteria.
1. Identify the Slope of the Given Line:
- The original line we are considering has a slope of [tex]\(-\frac{3}{2}\)[/tex] (slope [tex]\( m = -\frac{3}{2}\)[/tex]).
2. Find the Slope of the Perpendicular Line:
- The slope of a line perpendicular to another line is the negative reciprocal of the slope of the original line.
- Therefore, the slope [tex]\(m_p\)[/tex] of the perpendicular line is:
[tex]\[ m_p = -\frac{1}{m} = -\frac{1}{-\frac{3}{2}} = \frac{2}{3} \][/tex]
3. Check the [tex]\( y \)[/tex]-intercept:
- The given line passes through the point [tex]\((0, 2)\)[/tex], so its [tex]\( y \)[/tex]-intercept is 2.
4. Verify Other Lines:
- Now, we need to check each of the given lines to see if their slope is [tex]\(\frac{2}{3}\)[/tex] and if they pass through the [tex]\( y \)[/tex]-intercept 2.
- Line 1: Slope [tex]\( -\frac{3}{2} \)[/tex] and point [tex]\( (0, 2) \)[/tex]
- Slope does not match the required [tex]\(\frac{2}{3}\)[/tex].
- Line 2: Slope [tex]\( -\frac{2}{3} \)[/tex] and point [tex]\( (0, -2) \)[/tex]
- Slope does not match the required [tex]\(\frac{2}{3}\)[/tex] and the [tex]\( y \)[/tex]-intercept is incorrect.
- Line 3: Slope [tex]\( \frac{3}{2} \)[/tex] and point [tex]\( (0, 2) \)[/tex]
- Slope does not match the required [tex]\(\frac{2}{3}\)[/tex].
- Line 4: Slope [tex]\( -\frac{3}{2} \)[/tex] and point [tex]\( (0, -2) \)[/tex]
- Slope does not match the required [tex]\(\frac{2}{3}\)[/tex] and the [tex]\( y \)[/tex]-intercept is incorrect.
Given this analysis, none of the provided lines meet the necessary criteria of having a perpendicular slope of [tex]\(\frac{2}{3}\)[/tex] and the same [tex]\( y \)[/tex]-intercept of 2.
Therefore, the answer is no line from the given options meets the criteria.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.