Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Simplify.

[tex]\[ \frac{y^{-6}}{y^{-7}} \][/tex]

Write your answer with a positive exponent only.


Sagot :

To simplify [tex]\(\frac{y^{-6}}{y^{-7}}\)[/tex] and express the answer with a positive exponent, follow these steps:

1. Apply the properties of exponents:
The quotient rule for exponents states that [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]. Here, we can apply this rule to our expression.

[tex]\[ \frac{y^{-6}}{y^{-7}} = y^{-6 - (-7)} \][/tex]

2. Simplify the exponent:
Subtract the exponents in the numerator and the denominator.

[tex]\[ -6 - (-7) = -6 + 7 = 1 \][/tex]

3. Rewrite the expression:
Now replace the exponent with the simplified result.

[tex]\[ y^{1} \][/tex]

4. Final result:
The simplified form of the expression with a positive exponent is:

[tex]\[ y \][/tex]

Thus, the expression [tex]\(\frac{y^{-6}}{y^{-7}}\)[/tex] simplifies to [tex]\(y\)[/tex].