Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the equations of the line perpendicular to [tex]\(5x - 2y = -6\)[/tex] that passes through the point [tex]\((5, -4)\)[/tex], let's perform the following steps:
1. Find the slope of the original line:
The given line is [tex]\(5x - 2y = -6\)[/tex]. To find its slope, rewrite it in slope-intercept form [tex]\(y = mx + b\)[/tex].
[tex]\[ 5x - 2y = -6 \implies -2y = -5x - 6 \implies y = \frac{5}{2}x + 3 \][/tex]
The slope ([tex]\(m_1\)[/tex]) of the line is [tex]\(\frac{5}{2}\)[/tex].
2. Determine the slope of the perpendicular line:
The slope of a line perpendicular to another is the negative reciprocal of the original line's slope. Therefore, if the slope of the original line is [tex]\(\frac{5}{2}\)[/tex], the slope ([tex]\(m_2\)[/tex]) of the perpendicular line will be:
[tex]\[ m_2 = -\frac{1}{m_1} = -\frac{1}{\frac{5}{2}} = -\frac{2}{5} \][/tex]
3. Find the equation of the perpendicular line passing through the point [tex]\((5, -4)\)[/tex]:
Use the point-slope form of the equation of a line [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is a point on the line.
[tex]\[ y - (-4) = -\frac{2}{5}(x - 5) \][/tex]
Simplify this to get the equation in slope-intercept form:
[tex]\[ y + 4 = -\frac{2}{5}(x - 5) \][/tex]
[tex]\[ y + 4 = -\frac{2}{5}x + 2 \][/tex]
[tex]\[ y = -\frac{2}{5}x - 2 \][/tex]
So, the equation in slope-intercept form is [tex]\(y = -\frac{2}{5}x - 2\)[/tex].
4. Verify the equation forms:
Let's check the given options:
- Option 1: [tex]\(y = -\frac{2}{5}x - 2\)[/tex] — [tex]\(y = -\frac{2}{5}x - 2\)[/tex]. This matches the equation we found.
- Option 2: [tex]\(2x + 5y = -10\)[/tex]. Convert this to slope-intercept form:
[tex]\[ 5y = -2x - 10 \][/tex]
[tex]\[ y = -\frac{2}{5}x - 2 \][/tex]
This also matches the equation.
- Option 3: [tex]\(2x - 5y = -10\)[/tex]. Convert this to slope-intercept form:
[tex]\[ 5y = 2x + 10 \][/tex]
[tex]\[ y = \frac{2}{5}x + 2 \][/tex]
This does not match the equation.
- Option 4: [tex]\(y + 4 = -\frac{2}{5}(x - 5)\)[/tex]. This is already in point-slope form and directly simplifies as we showed earlier. It matches the equation.
- Option 5: [tex]\(y - 4 = \frac{5}{2}(x + 5)\)[/tex]. Convert this to slope-intercept form:
[tex]\[ y - 4 = \frac{5}{2}x + \frac{25}{2} \][/tex]
[tex]\[ y = \frac{5}{2}x + \frac{25}{2} + 4 \][/tex]
This does not match the equation.
Therefore, the correct equations that represent the line that is perpendicular to [tex]\(5x - 2y = -6\)[/tex] and passes through the point [tex]\((5, -4)\)[/tex] are:
1. [tex]\(y = -\frac{2}{5}x - 2\)[/tex]
2. [tex]\(2x + 5y = -10\)[/tex]
4. [tex]\(y + 4 = -\frac{2}{5}(x - 5)\)[/tex]
Hence, the options are [tex]\(\boxed{2}\)[/tex] and [tex]\(\boxed{4}\)[/tex].
1. Find the slope of the original line:
The given line is [tex]\(5x - 2y = -6\)[/tex]. To find its slope, rewrite it in slope-intercept form [tex]\(y = mx + b\)[/tex].
[tex]\[ 5x - 2y = -6 \implies -2y = -5x - 6 \implies y = \frac{5}{2}x + 3 \][/tex]
The slope ([tex]\(m_1\)[/tex]) of the line is [tex]\(\frac{5}{2}\)[/tex].
2. Determine the slope of the perpendicular line:
The slope of a line perpendicular to another is the negative reciprocal of the original line's slope. Therefore, if the slope of the original line is [tex]\(\frac{5}{2}\)[/tex], the slope ([tex]\(m_2\)[/tex]) of the perpendicular line will be:
[tex]\[ m_2 = -\frac{1}{m_1} = -\frac{1}{\frac{5}{2}} = -\frac{2}{5} \][/tex]
3. Find the equation of the perpendicular line passing through the point [tex]\((5, -4)\)[/tex]:
Use the point-slope form of the equation of a line [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\((x_1, y_1)\)[/tex] is a point on the line.
[tex]\[ y - (-4) = -\frac{2}{5}(x - 5) \][/tex]
Simplify this to get the equation in slope-intercept form:
[tex]\[ y + 4 = -\frac{2}{5}(x - 5) \][/tex]
[tex]\[ y + 4 = -\frac{2}{5}x + 2 \][/tex]
[tex]\[ y = -\frac{2}{5}x - 2 \][/tex]
So, the equation in slope-intercept form is [tex]\(y = -\frac{2}{5}x - 2\)[/tex].
4. Verify the equation forms:
Let's check the given options:
- Option 1: [tex]\(y = -\frac{2}{5}x - 2\)[/tex] — [tex]\(y = -\frac{2}{5}x - 2\)[/tex]. This matches the equation we found.
- Option 2: [tex]\(2x + 5y = -10\)[/tex]. Convert this to slope-intercept form:
[tex]\[ 5y = -2x - 10 \][/tex]
[tex]\[ y = -\frac{2}{5}x - 2 \][/tex]
This also matches the equation.
- Option 3: [tex]\(2x - 5y = -10\)[/tex]. Convert this to slope-intercept form:
[tex]\[ 5y = 2x + 10 \][/tex]
[tex]\[ y = \frac{2}{5}x + 2 \][/tex]
This does not match the equation.
- Option 4: [tex]\(y + 4 = -\frac{2}{5}(x - 5)\)[/tex]. This is already in point-slope form and directly simplifies as we showed earlier. It matches the equation.
- Option 5: [tex]\(y - 4 = \frac{5}{2}(x + 5)\)[/tex]. Convert this to slope-intercept form:
[tex]\[ y - 4 = \frac{5}{2}x + \frac{25}{2} \][/tex]
[tex]\[ y = \frac{5}{2}x + \frac{25}{2} + 4 \][/tex]
This does not match the equation.
Therefore, the correct equations that represent the line that is perpendicular to [tex]\(5x - 2y = -6\)[/tex] and passes through the point [tex]\((5, -4)\)[/tex] are:
1. [tex]\(y = -\frac{2}{5}x - 2\)[/tex]
2. [tex]\(2x + 5y = -10\)[/tex]
4. [tex]\(y + 4 = -\frac{2}{5}(x - 5)\)[/tex]
Hence, the options are [tex]\(\boxed{2}\)[/tex] and [tex]\(\boxed{4}\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.