Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's solve the problem of finding the probability of rolling a 1, a 6, and a 4 in any order on three rolls of a fair six-sided die.
1. Determine the probability of rolling each specific number:
Since a fair six-sided die has six faces, the probability of rolling any particular number (such as 1, 6, or 4) on a single roll is:
[tex]\[ P(\text{specific number}) = \frac{1}{6} \][/tex]
2. Identify the probability of rolling the sequence 1, 6, 4:
Since each roll is independent, the probability of rolling the specific sequence of 1, 6, and 4 in that precise order is the product of the individual probabilities:
[tex]\[ P(1 \text{ then } 6 \text{ then } 4) = \left(\frac{1}{6}\right) \times \left(\frac{1}{6}\right) \times \left(\frac{1}{6}\right) \][/tex]
3. Calculate the probability for the sequence:
[tex]\[ P(1 \text{ then } 6 \text{ then } 4) = \left(\frac{1}{6}\right)^3 = \frac{1}{216} \][/tex]
So, the probability of rolling the sequence [tex]\(1, 6, 4\)[/tex] on three rolls of a die is approximately [tex]\(0.0046296296296296285\)[/tex].
Here are the intermediate values:
- The probability of each specific number on a single roll: [tex]\(0.16666666666666666\)[/tex]
- The final probability of rolling the sequence [tex]\(1, 6, 4\)[/tex]: [tex]\(0.0046296296296296285\)[/tex]
Thus, [tex]\[P(1, 6, 4) = 0.0046296296296296285\][/tex]
1. Determine the probability of rolling each specific number:
Since a fair six-sided die has six faces, the probability of rolling any particular number (such as 1, 6, or 4) on a single roll is:
[tex]\[ P(\text{specific number}) = \frac{1}{6} \][/tex]
2. Identify the probability of rolling the sequence 1, 6, 4:
Since each roll is independent, the probability of rolling the specific sequence of 1, 6, and 4 in that precise order is the product of the individual probabilities:
[tex]\[ P(1 \text{ then } 6 \text{ then } 4) = \left(\frac{1}{6}\right) \times \left(\frac{1}{6}\right) \times \left(\frac{1}{6}\right) \][/tex]
3. Calculate the probability for the sequence:
[tex]\[ P(1 \text{ then } 6 \text{ then } 4) = \left(\frac{1}{6}\right)^3 = \frac{1}{216} \][/tex]
So, the probability of rolling the sequence [tex]\(1, 6, 4\)[/tex] on three rolls of a die is approximately [tex]\(0.0046296296296296285\)[/tex].
Here are the intermediate values:
- The probability of each specific number on a single roll: [tex]\(0.16666666666666666\)[/tex]
- The final probability of rolling the sequence [tex]\(1, 6, 4\)[/tex]: [tex]\(0.0046296296296296285\)[/tex]
Thus, [tex]\[P(1, 6, 4) = 0.0046296296296296285\][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.