At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the equation [tex]\((1.5)^{x-1} = 14.5\)[/tex], we will use logarithms to isolate [tex]\(x\)[/tex]. Here’s the step-by-step process:
1. Start with the given equation:
[tex]\[ (1.5)^{x-1} = 14.5 \][/tex]
2. Take the natural logarithm of both sides:
[tex]\[ \ln \left( (1.5)^{x-1} \right) = \ln(14.5) \][/tex]
3. Use the logarithm power rule [tex]\(\ln(a^b) = b \ln(a)\)[/tex] to simplify the left side:
[tex]\[ (x-1) \ln(1.5) = \ln(14.5) \][/tex]
4. Calculate the natural logarithms:
[tex]\[ \ln(1.5) \approx 0.4055 \][/tex]
[tex]\[ \ln(14.5) \approx 2.6741 \][/tex]
5. Solve for [tex]\(x-1\)[/tex] by isolating the term:
[tex]\[ x-1 = \frac{\ln(14.5)}{\ln(1.5)} \][/tex]
[tex]\[ x-1 \approx \frac{2.6741}{0.4055} \approx 6.5953 \][/tex]
6. Add 1 to both sides to solve for [tex]\(x\)[/tex]:
[tex]\[ x = 6.5953 + 1 \approx 7.5953 \][/tex]
7. Round the result to the nearest tenth:
[tex]\[ x \approx 7.6 \][/tex]
Therefore, the value of [tex]\(x\)[/tex], rounded to the nearest tenth, is [tex]\( \boxed{7.6} \)[/tex].
1. Start with the given equation:
[tex]\[ (1.5)^{x-1} = 14.5 \][/tex]
2. Take the natural logarithm of both sides:
[tex]\[ \ln \left( (1.5)^{x-1} \right) = \ln(14.5) \][/tex]
3. Use the logarithm power rule [tex]\(\ln(a^b) = b \ln(a)\)[/tex] to simplify the left side:
[tex]\[ (x-1) \ln(1.5) = \ln(14.5) \][/tex]
4. Calculate the natural logarithms:
[tex]\[ \ln(1.5) \approx 0.4055 \][/tex]
[tex]\[ \ln(14.5) \approx 2.6741 \][/tex]
5. Solve for [tex]\(x-1\)[/tex] by isolating the term:
[tex]\[ x-1 = \frac{\ln(14.5)}{\ln(1.5)} \][/tex]
[tex]\[ x-1 \approx \frac{2.6741}{0.4055} \approx 6.5953 \][/tex]
6. Add 1 to both sides to solve for [tex]\(x\)[/tex]:
[tex]\[ x = 6.5953 + 1 \approx 7.5953 \][/tex]
7. Round the result to the nearest tenth:
[tex]\[ x \approx 7.6 \][/tex]
Therefore, the value of [tex]\(x\)[/tex], rounded to the nearest tenth, is [tex]\( \boxed{7.6} \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.