Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the equation [tex]\((1.5)^{x-1} = 14.5\)[/tex], we will use logarithms to isolate [tex]\(x\)[/tex]. Here’s the step-by-step process:
1. Start with the given equation:
[tex]\[ (1.5)^{x-1} = 14.5 \][/tex]
2. Take the natural logarithm of both sides:
[tex]\[ \ln \left( (1.5)^{x-1} \right) = \ln(14.5) \][/tex]
3. Use the logarithm power rule [tex]\(\ln(a^b) = b \ln(a)\)[/tex] to simplify the left side:
[tex]\[ (x-1) \ln(1.5) = \ln(14.5) \][/tex]
4. Calculate the natural logarithms:
[tex]\[ \ln(1.5) \approx 0.4055 \][/tex]
[tex]\[ \ln(14.5) \approx 2.6741 \][/tex]
5. Solve for [tex]\(x-1\)[/tex] by isolating the term:
[tex]\[ x-1 = \frac{\ln(14.5)}{\ln(1.5)} \][/tex]
[tex]\[ x-1 \approx \frac{2.6741}{0.4055} \approx 6.5953 \][/tex]
6. Add 1 to both sides to solve for [tex]\(x\)[/tex]:
[tex]\[ x = 6.5953 + 1 \approx 7.5953 \][/tex]
7. Round the result to the nearest tenth:
[tex]\[ x \approx 7.6 \][/tex]
Therefore, the value of [tex]\(x\)[/tex], rounded to the nearest tenth, is [tex]\( \boxed{7.6} \)[/tex].
1. Start with the given equation:
[tex]\[ (1.5)^{x-1} = 14.5 \][/tex]
2. Take the natural logarithm of both sides:
[tex]\[ \ln \left( (1.5)^{x-1} \right) = \ln(14.5) \][/tex]
3. Use the logarithm power rule [tex]\(\ln(a^b) = b \ln(a)\)[/tex] to simplify the left side:
[tex]\[ (x-1) \ln(1.5) = \ln(14.5) \][/tex]
4. Calculate the natural logarithms:
[tex]\[ \ln(1.5) \approx 0.4055 \][/tex]
[tex]\[ \ln(14.5) \approx 2.6741 \][/tex]
5. Solve for [tex]\(x-1\)[/tex] by isolating the term:
[tex]\[ x-1 = \frac{\ln(14.5)}{\ln(1.5)} \][/tex]
[tex]\[ x-1 \approx \frac{2.6741}{0.4055} \approx 6.5953 \][/tex]
6. Add 1 to both sides to solve for [tex]\(x\)[/tex]:
[tex]\[ x = 6.5953 + 1 \approx 7.5953 \][/tex]
7. Round the result to the nearest tenth:
[tex]\[ x \approx 7.6 \][/tex]
Therefore, the value of [tex]\(x\)[/tex], rounded to the nearest tenth, is [tex]\( \boxed{7.6} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.