Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the equation [tex]\((1.5)^{x-1} = 14.5\)[/tex], we will use logarithms to isolate [tex]\(x\)[/tex]. Here’s the step-by-step process:
1. Start with the given equation:
[tex]\[ (1.5)^{x-1} = 14.5 \][/tex]
2. Take the natural logarithm of both sides:
[tex]\[ \ln \left( (1.5)^{x-1} \right) = \ln(14.5) \][/tex]
3. Use the logarithm power rule [tex]\(\ln(a^b) = b \ln(a)\)[/tex] to simplify the left side:
[tex]\[ (x-1) \ln(1.5) = \ln(14.5) \][/tex]
4. Calculate the natural logarithms:
[tex]\[ \ln(1.5) \approx 0.4055 \][/tex]
[tex]\[ \ln(14.5) \approx 2.6741 \][/tex]
5. Solve for [tex]\(x-1\)[/tex] by isolating the term:
[tex]\[ x-1 = \frac{\ln(14.5)}{\ln(1.5)} \][/tex]
[tex]\[ x-1 \approx \frac{2.6741}{0.4055} \approx 6.5953 \][/tex]
6. Add 1 to both sides to solve for [tex]\(x\)[/tex]:
[tex]\[ x = 6.5953 + 1 \approx 7.5953 \][/tex]
7. Round the result to the nearest tenth:
[tex]\[ x \approx 7.6 \][/tex]
Therefore, the value of [tex]\(x\)[/tex], rounded to the nearest tenth, is [tex]\( \boxed{7.6} \)[/tex].
1. Start with the given equation:
[tex]\[ (1.5)^{x-1} = 14.5 \][/tex]
2. Take the natural logarithm of both sides:
[tex]\[ \ln \left( (1.5)^{x-1} \right) = \ln(14.5) \][/tex]
3. Use the logarithm power rule [tex]\(\ln(a^b) = b \ln(a)\)[/tex] to simplify the left side:
[tex]\[ (x-1) \ln(1.5) = \ln(14.5) \][/tex]
4. Calculate the natural logarithms:
[tex]\[ \ln(1.5) \approx 0.4055 \][/tex]
[tex]\[ \ln(14.5) \approx 2.6741 \][/tex]
5. Solve for [tex]\(x-1\)[/tex] by isolating the term:
[tex]\[ x-1 = \frac{\ln(14.5)}{\ln(1.5)} \][/tex]
[tex]\[ x-1 \approx \frac{2.6741}{0.4055} \approx 6.5953 \][/tex]
6. Add 1 to both sides to solve for [tex]\(x\)[/tex]:
[tex]\[ x = 6.5953 + 1 \approx 7.5953 \][/tex]
7. Round the result to the nearest tenth:
[tex]\[ x \approx 7.6 \][/tex]
Therefore, the value of [tex]\(x\)[/tex], rounded to the nearest tenth, is [tex]\( \boxed{7.6} \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.