Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine if the point [tex]\((-4, 2)\)[/tex] is a solution to the system of equations:
[tex]\[ \begin{array}{l} y = -\frac{1}{4}x + 1 \\ y = \frac{1}{2}x - 1 \end{array} \][/tex]
we need to check if the point satisfies both of these equations.
Step 1: Check the first equation
Substitute [tex]\(x = -4\)[/tex] and [tex]\(y = 2\)[/tex] into the first equation:
[tex]\[ y = -\frac{1}{4}x + 1 \][/tex]
[tex]\[ 2 = -\frac{1}{4}(-4) + 1 \][/tex]
Calculate the right-hand side:
[tex]\[ 2 = 1 + 1 \][/tex]
[tex]\[ 2 = 2 \][/tex]
The point [tex]\((-4, 2)\)[/tex] satisfies the first equation.
Step 2: Check the second equation
Now, substitute [tex]\(x = -4\)[/tex] and [tex]\(y = 2\)[/tex] into the second equation:
[tex]\[ y = \frac{1}{2}x - 1 \][/tex]
[tex]\[ 2 = \frac{1}{2}(-4) - 1 \][/tex]
Calculate the right-hand side:
[tex]\[ 2 = -2 - 1 \][/tex]
[tex]\[ 2 = -3 \][/tex]
The point [tex]\((-4, 2)\)[/tex] does not satisfy the second equation.
Conclusion:
The point [tex]\((-4, 2)\)[/tex] satisfies the first equation but does not satisfy the second equation. Since a solution to the system of equations must satisfy both equations simultaneously, the point [tex]\((-4, 2)\)[/tex] is not a solution to the system of equations.
Therefore, the answer is no.
[tex]\[ \begin{array}{l} y = -\frac{1}{4}x + 1 \\ y = \frac{1}{2}x - 1 \end{array} \][/tex]
we need to check if the point satisfies both of these equations.
Step 1: Check the first equation
Substitute [tex]\(x = -4\)[/tex] and [tex]\(y = 2\)[/tex] into the first equation:
[tex]\[ y = -\frac{1}{4}x + 1 \][/tex]
[tex]\[ 2 = -\frac{1}{4}(-4) + 1 \][/tex]
Calculate the right-hand side:
[tex]\[ 2 = 1 + 1 \][/tex]
[tex]\[ 2 = 2 \][/tex]
The point [tex]\((-4, 2)\)[/tex] satisfies the first equation.
Step 2: Check the second equation
Now, substitute [tex]\(x = -4\)[/tex] and [tex]\(y = 2\)[/tex] into the second equation:
[tex]\[ y = \frac{1}{2}x - 1 \][/tex]
[tex]\[ 2 = \frac{1}{2}(-4) - 1 \][/tex]
Calculate the right-hand side:
[tex]\[ 2 = -2 - 1 \][/tex]
[tex]\[ 2 = -3 \][/tex]
The point [tex]\((-4, 2)\)[/tex] does not satisfy the second equation.
Conclusion:
The point [tex]\((-4, 2)\)[/tex] satisfies the first equation but does not satisfy the second equation. Since a solution to the system of equations must satisfy both equations simultaneously, the point [tex]\((-4, 2)\)[/tex] is not a solution to the system of equations.
Therefore, the answer is no.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.