Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To answer the question regarding the equation [tex]\( y = 2^x + 4 \)[/tex], let's analyze it in detail.
1. Understanding Relations and Functions:
- A relation is a set of ordered pairs, and a relation describes how elements from one set (inputs, usually denoted as [tex]\(x\)[/tex]) are related to elements in another set (outputs, usually denoted as [tex]\(y\)[/tex]).
- A function is a specific type of relation where each input [tex]\(x\)[/tex] is associated with exactly one output [tex]\(y\)[/tex]. In other words, for every [tex]\(x\)[/tex], there is a unique [tex]\(y\)[/tex].
2. Checking if the Equation [tex]\( y = 2^x + 4 \)[/tex] Represents a Relation:
- Since this equation pairs inputs [tex]\(x\)[/tex] with outputs [tex]\(y\)[/tex] (i.e., it can generate ordered pairs [tex]\((x, y)\)[/tex]), it certainly represents a relation.
3. Checking if the Equation [tex]\( y = 2^x + 4 \)[/tex] Represents a Function:
- For any given [tex]\(x\)[/tex], the corresponding value of [tex]\(y\)[/tex] is given by [tex]\(2^x + 4\)[/tex].
- For instance, if [tex]\(x = 1\)[/tex], then [tex]\(y = 2^1 + 4 = 6\)[/tex]. If [tex]\(x = 2\)[/tex], then [tex]\(y = 2^2 + 4 = 8\)[/tex], and so on.
- Importantly, for every unique input [tex]\(x\)[/tex], there is always a unique output [tex]\(y\)[/tex]. This satisfies the definition of a function.
4. Conclusion:
- The equation [tex]\( y = 2^x + 4 \)[/tex] satisfies both the criteria of being a relation (since it pairs [tex]\(x\)[/tex] and [tex]\(y\)[/tex]) and a function (because each [tex]\(x\)[/tex] has only one [tex]\(y\)[/tex]).
Therefore, the correct statement about the equation [tex]\( y = 2^x + 4 \)[/tex] is:
D. It represents both a relation and a function.
1. Understanding Relations and Functions:
- A relation is a set of ordered pairs, and a relation describes how elements from one set (inputs, usually denoted as [tex]\(x\)[/tex]) are related to elements in another set (outputs, usually denoted as [tex]\(y\)[/tex]).
- A function is a specific type of relation where each input [tex]\(x\)[/tex] is associated with exactly one output [tex]\(y\)[/tex]. In other words, for every [tex]\(x\)[/tex], there is a unique [tex]\(y\)[/tex].
2. Checking if the Equation [tex]\( y = 2^x + 4 \)[/tex] Represents a Relation:
- Since this equation pairs inputs [tex]\(x\)[/tex] with outputs [tex]\(y\)[/tex] (i.e., it can generate ordered pairs [tex]\((x, y)\)[/tex]), it certainly represents a relation.
3. Checking if the Equation [tex]\( y = 2^x + 4 \)[/tex] Represents a Function:
- For any given [tex]\(x\)[/tex], the corresponding value of [tex]\(y\)[/tex] is given by [tex]\(2^x + 4\)[/tex].
- For instance, if [tex]\(x = 1\)[/tex], then [tex]\(y = 2^1 + 4 = 6\)[/tex]. If [tex]\(x = 2\)[/tex], then [tex]\(y = 2^2 + 4 = 8\)[/tex], and so on.
- Importantly, for every unique input [tex]\(x\)[/tex], there is always a unique output [tex]\(y\)[/tex]. This satisfies the definition of a function.
4. Conclusion:
- The equation [tex]\( y = 2^x + 4 \)[/tex] satisfies both the criteria of being a relation (since it pairs [tex]\(x\)[/tex] and [tex]\(y\)[/tex]) and a function (because each [tex]\(x\)[/tex] has only one [tex]\(y\)[/tex]).
Therefore, the correct statement about the equation [tex]\( y = 2^x + 4 \)[/tex] is:
D. It represents both a relation and a function.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.