At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To answer the question regarding the equation [tex]\( y = 2^x + 4 \)[/tex], let's analyze it in detail.
1. Understanding Relations and Functions:
- A relation is a set of ordered pairs, and a relation describes how elements from one set (inputs, usually denoted as [tex]\(x\)[/tex]) are related to elements in another set (outputs, usually denoted as [tex]\(y\)[/tex]).
- A function is a specific type of relation where each input [tex]\(x\)[/tex] is associated with exactly one output [tex]\(y\)[/tex]. In other words, for every [tex]\(x\)[/tex], there is a unique [tex]\(y\)[/tex].
2. Checking if the Equation [tex]\( y = 2^x + 4 \)[/tex] Represents a Relation:
- Since this equation pairs inputs [tex]\(x\)[/tex] with outputs [tex]\(y\)[/tex] (i.e., it can generate ordered pairs [tex]\((x, y)\)[/tex]), it certainly represents a relation.
3. Checking if the Equation [tex]\( y = 2^x + 4 \)[/tex] Represents a Function:
- For any given [tex]\(x\)[/tex], the corresponding value of [tex]\(y\)[/tex] is given by [tex]\(2^x + 4\)[/tex].
- For instance, if [tex]\(x = 1\)[/tex], then [tex]\(y = 2^1 + 4 = 6\)[/tex]. If [tex]\(x = 2\)[/tex], then [tex]\(y = 2^2 + 4 = 8\)[/tex], and so on.
- Importantly, for every unique input [tex]\(x\)[/tex], there is always a unique output [tex]\(y\)[/tex]. This satisfies the definition of a function.
4. Conclusion:
- The equation [tex]\( y = 2^x + 4 \)[/tex] satisfies both the criteria of being a relation (since it pairs [tex]\(x\)[/tex] and [tex]\(y\)[/tex]) and a function (because each [tex]\(x\)[/tex] has only one [tex]\(y\)[/tex]).
Therefore, the correct statement about the equation [tex]\( y = 2^x + 4 \)[/tex] is:
D. It represents both a relation and a function.
1. Understanding Relations and Functions:
- A relation is a set of ordered pairs, and a relation describes how elements from one set (inputs, usually denoted as [tex]\(x\)[/tex]) are related to elements in another set (outputs, usually denoted as [tex]\(y\)[/tex]).
- A function is a specific type of relation where each input [tex]\(x\)[/tex] is associated with exactly one output [tex]\(y\)[/tex]. In other words, for every [tex]\(x\)[/tex], there is a unique [tex]\(y\)[/tex].
2. Checking if the Equation [tex]\( y = 2^x + 4 \)[/tex] Represents a Relation:
- Since this equation pairs inputs [tex]\(x\)[/tex] with outputs [tex]\(y\)[/tex] (i.e., it can generate ordered pairs [tex]\((x, y)\)[/tex]), it certainly represents a relation.
3. Checking if the Equation [tex]\( y = 2^x + 4 \)[/tex] Represents a Function:
- For any given [tex]\(x\)[/tex], the corresponding value of [tex]\(y\)[/tex] is given by [tex]\(2^x + 4\)[/tex].
- For instance, if [tex]\(x = 1\)[/tex], then [tex]\(y = 2^1 + 4 = 6\)[/tex]. If [tex]\(x = 2\)[/tex], then [tex]\(y = 2^2 + 4 = 8\)[/tex], and so on.
- Importantly, for every unique input [tex]\(x\)[/tex], there is always a unique output [tex]\(y\)[/tex]. This satisfies the definition of a function.
4. Conclusion:
- The equation [tex]\( y = 2^x + 4 \)[/tex] satisfies both the criteria of being a relation (since it pairs [tex]\(x\)[/tex] and [tex]\(y\)[/tex]) and a function (because each [tex]\(x\)[/tex] has only one [tex]\(y\)[/tex]).
Therefore, the correct statement about the equation [tex]\( y = 2^x + 4 \)[/tex] is:
D. It represents both a relation and a function.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.