At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Divide the polynomial [tex]\(\left(x^2 + 2x + 6\right)\)[/tex] by [tex]\((x - 3)\)[/tex].

Sagot :

Certainly! To divide the polynomial [tex]\(x^2 + 2x + 6\)[/tex] by [tex]\(x - 3\)[/tex], we will use polynomial long division. Here's a step-by-step breakdown of how the division process works:

### Step 1: Set up the Division
We start by setting up the division, where [tex]\(x^2 + 2x + 6\)[/tex] (the dividend) is divided by [tex]\(x - 3\)[/tex] (the divisor).

```
_______________
x - 3 | x^2 + 2x + 6
```

### Step 2: Divide the Leading Terms
Divide the leading term of the dividend (which is [tex]\(x^2\)[/tex]) by the leading term of the divisor (which is [tex]\(x\)[/tex]):
[tex]\[ \frac{x^2}{x} = x \][/tex]
So, [tex]\(x\)[/tex] is the first term of our quotient.

### Step 3: Multiply and Subtract
Now, multiply the entire divisor [tex]\(x - 3\)[/tex] by [tex]\(x\)[/tex]:
[tex]\[ x \cdot (x - 3) = x^2 - 3x \][/tex]

Next, subtract this result from the original dividend:
[tex]\[ (x^2 + 2x + 6) - (x^2 - 3x) = (x^2 + 2x + 6) - x^2 + 3x = 5x + 6 \][/tex]

This leaves us with a new dividend:
[tex]\[ 5x + 6 \][/tex]

### Step 4: Repeat the Process
Now, we repeat the process with the new dividend [tex]\(5x + 6\)[/tex].

First, divide the leading term of the new dividend (which is [tex]\(5x\)[/tex]) by the leading term of the divisor (which is [tex]\(x\)[/tex]):
[tex]\[ \frac{5x}{x} = 5 \][/tex]
So, [tex]\(5\)[/tex] is the next term of our quotient.

### Step 5: Multiply and Subtract Again
Multiply the entire divisor [tex]\(x - 3\)[/tex] by [tex]\(5\)[/tex]:
[tex]\[ 5 \cdot (x - 3) = 5x - 15 \][/tex]

Subtract this result from the new dividend:
[tex]\[ (5x + 6) - (5x - 15) = (5x + 6) - 5x + 15 = 21 \][/tex]

This leaves us with:
[tex]\[ 21 \][/tex]

### Step 6: Collect the Results
Since the degree of the remainder [tex]\(21\)[/tex] is less than the degree of the divisor [tex]\(x - 3\)[/tex], we cannot continue the division further.

Thus, the quotient is [tex]\(x + 5\)[/tex] and the remainder is [tex]\(21\)[/tex].

### Final Result
[tex]\[ \frac{x^2 + 2x + 6}{x - 3} = x + 5 + \frac{21}{x - 3} \][/tex]

So, the quotient is [tex]\(x + 5\)[/tex] and the remainder is [tex]\(21\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.