Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's solve this problem by following these step-by-step:
### Step 1: Calculate sample proportions
We need to determine the sample proportions from the given data:
- For the first container:
- Number of red beads sampled = 10
- Total number of beads sampled = 50
- Sample proportion ([tex]\( p1_{hat} \)[/tex]) = [tex]\( \frac{10}{50} = 0.2 \)[/tex]
- For the second container:
- Number of red beads sampled = 16
- Total number of beads sampled = 50
- Sample proportion ([tex]\( p2_{hat} \)[/tex]) = [tex]\( \frac{16}{50} = 0.32 \)[/tex]
### Step 2: Determine the combined proportion
The combined proportion ([tex]\( p_{combined} \)[/tex]) of red beads is calculated by combining the red beads and total beads from both samples:
[tex]\[ p_{combined} = \frac{10 + 16}{50 + 50} = \frac{26}{100} = 0.26 \][/tex]
### Step 3: Calculate the standard error
The standard error (SE) of the difference between the sample proportions is given by:
[tex]\[ SE = \sqrt{ p_{combined} (1 - p_{combined}) \left(\frac{1}{n1} + \frac{1}{n2}\right) } \][/tex]
where:
- [tex]\( p_{combined} = 0.26 \)[/tex]
- [tex]\( n1 = 50 \)[/tex]
- [tex]\( n2 = 50 \)[/tex]
Let's substitute the values:
[tex]\[ SE = \sqrt{ 0.26 \times (1 - 0.26) \left(\frac{1}{50} + \frac{1}{50}\right) } \][/tex]
[tex]\[ SE = \sqrt{ 0.26 \times 0.74 \left(\frac{2}{50}\right) } \][/tex]
[tex]\[ SE = \sqrt{ 0.26 \times 0.74 \times 0.04 } \][/tex]
[tex]\[ SE \approx 0.0877 \][/tex]
### Step 4: Calculate the z-score
The z-score is calculated as:
[tex]\[ z = \frac{p1_{hat} - p2_{hat}}{SE} \][/tex]
Substituting the values:
[tex]\[ z = \frac{0.2 - 0.32}{0.0877} \][/tex]
[tex]\[ z \approx -1.368 \][/tex]
### Step 5: Calculate the p-value
The p-value is the probability that the observed difference between the sample proportions is at least as extreme as the difference observed, under the null hypothesis. Given the z-score calculated, the p-value (considering a two-tailed test) can be found using a z-table:
[tex]\[ \text{p-value} = 2 \left(1 - \Phi(|z|)\right) \][/tex]
Where [tex]\(\Phi(z)\)[/tex] represents the cumulative distribution function of the normal distribution.
For [tex]\( z \approx -1.368 \)[/tex]:
[tex]\[ \text{p-value} \approx 2 ( 1 - 0.0857) = 2 \times 0.9143 \approx 0.171 \][/tex]
### Conclusion
The correct standardized test statistic and p-value for testing the hypotheses [tex]\( H_0: p1 - p2 = 0 \)[/tex] and [tex]\( H_A: p1 \neq p2 \)[/tex] are:
[tex]\[ z = \frac{0.20 - 0.32}{\sqrt{\frac{(0.26)(0.74)}{100}}}, \][/tex]
[tex]\[ \text{p-value} = 0.171 \][/tex]
Hence, the correct option is:
[tex]\[ z = \frac{0.20 - 0.32}{\sqrt{\frac{(0.20)(0.80)}{50} + \frac{(0.32)(0.68)}{50}}}, \text{ p-value } = 0.171 \][/tex]
### Step 1: Calculate sample proportions
We need to determine the sample proportions from the given data:
- For the first container:
- Number of red beads sampled = 10
- Total number of beads sampled = 50
- Sample proportion ([tex]\( p1_{hat} \)[/tex]) = [tex]\( \frac{10}{50} = 0.2 \)[/tex]
- For the second container:
- Number of red beads sampled = 16
- Total number of beads sampled = 50
- Sample proportion ([tex]\( p2_{hat} \)[/tex]) = [tex]\( \frac{16}{50} = 0.32 \)[/tex]
### Step 2: Determine the combined proportion
The combined proportion ([tex]\( p_{combined} \)[/tex]) of red beads is calculated by combining the red beads and total beads from both samples:
[tex]\[ p_{combined} = \frac{10 + 16}{50 + 50} = \frac{26}{100} = 0.26 \][/tex]
### Step 3: Calculate the standard error
The standard error (SE) of the difference between the sample proportions is given by:
[tex]\[ SE = \sqrt{ p_{combined} (1 - p_{combined}) \left(\frac{1}{n1} + \frac{1}{n2}\right) } \][/tex]
where:
- [tex]\( p_{combined} = 0.26 \)[/tex]
- [tex]\( n1 = 50 \)[/tex]
- [tex]\( n2 = 50 \)[/tex]
Let's substitute the values:
[tex]\[ SE = \sqrt{ 0.26 \times (1 - 0.26) \left(\frac{1}{50} + \frac{1}{50}\right) } \][/tex]
[tex]\[ SE = \sqrt{ 0.26 \times 0.74 \left(\frac{2}{50}\right) } \][/tex]
[tex]\[ SE = \sqrt{ 0.26 \times 0.74 \times 0.04 } \][/tex]
[tex]\[ SE \approx 0.0877 \][/tex]
### Step 4: Calculate the z-score
The z-score is calculated as:
[tex]\[ z = \frac{p1_{hat} - p2_{hat}}{SE} \][/tex]
Substituting the values:
[tex]\[ z = \frac{0.2 - 0.32}{0.0877} \][/tex]
[tex]\[ z \approx -1.368 \][/tex]
### Step 5: Calculate the p-value
The p-value is the probability that the observed difference between the sample proportions is at least as extreme as the difference observed, under the null hypothesis. Given the z-score calculated, the p-value (considering a two-tailed test) can be found using a z-table:
[tex]\[ \text{p-value} = 2 \left(1 - \Phi(|z|)\right) \][/tex]
Where [tex]\(\Phi(z)\)[/tex] represents the cumulative distribution function of the normal distribution.
For [tex]\( z \approx -1.368 \)[/tex]:
[tex]\[ \text{p-value} \approx 2 ( 1 - 0.0857) = 2 \times 0.9143 \approx 0.171 \][/tex]
### Conclusion
The correct standardized test statistic and p-value for testing the hypotheses [tex]\( H_0: p1 - p2 = 0 \)[/tex] and [tex]\( H_A: p1 \neq p2 \)[/tex] are:
[tex]\[ z = \frac{0.20 - 0.32}{\sqrt{\frac{(0.26)(0.74)}{100}}}, \][/tex]
[tex]\[ \text{p-value} = 0.171 \][/tex]
Hence, the correct option is:
[tex]\[ z = \frac{0.20 - 0.32}{\sqrt{\frac{(0.20)(0.80)}{50} + \frac{(0.32)(0.68)}{50}}}, \text{ p-value } = 0.171 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.