At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the equation of the line that is parallel to the line [tex]\( y - 1 = 4(x + 3) \)[/tex] and passes through the point [tex]\( (4, 32) \)[/tex], follow these steps:
1. Identify the slope of the given line. The equation [tex]\( y - 1 = 4(x + 3) \)[/tex] is in point-slope form, [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( m \)[/tex] represents the slope.
[tex]\[ y - 1 = 4(x + 3) \][/tex]
The slope [tex]\( m \)[/tex] here is 4.
2. Since the line we are seeking is parallel to the given line, it will have the same slope, which is [tex]\( m = 4 \)[/tex].
3. Use the point-slope form to find the equation of the new line using the slope [tex]\( m = 4 \)[/tex] and the point [tex]\( (4, 32) \)[/tex]:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substituting the point [tex]\((4, 32)\)[/tex] and the slope [tex]\( m = 4 \)[/tex]:
[tex]\[ y - 32 = 4(x - 4) \][/tex]
4. Distribute the slope on the right-hand side of the equation:
[tex]\[ y - 32 = 4x - 16 \][/tex]
5. Solve for [tex]\( y \)[/tex] to convert the equation to slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y - 32 = 4x - 16 \][/tex]
Add 32 to both sides:
[tex]\[ y = 4x - 16 + 32 \][/tex]
Simplify:
[tex]\[ y = 4x + 16 \][/tex]
Thus, the equation of the line that is parallel to [tex]\( y - 1 = 4(x + 3) \)[/tex] and passes through the point [tex]\( (4, 32) \)[/tex] is:
[tex]\[ y = 4x + 16 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{y = 4x + 16} \][/tex]
1. Identify the slope of the given line. The equation [tex]\( y - 1 = 4(x + 3) \)[/tex] is in point-slope form, [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( m \)[/tex] represents the slope.
[tex]\[ y - 1 = 4(x + 3) \][/tex]
The slope [tex]\( m \)[/tex] here is 4.
2. Since the line we are seeking is parallel to the given line, it will have the same slope, which is [tex]\( m = 4 \)[/tex].
3. Use the point-slope form to find the equation of the new line using the slope [tex]\( m = 4 \)[/tex] and the point [tex]\( (4, 32) \)[/tex]:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Substituting the point [tex]\((4, 32)\)[/tex] and the slope [tex]\( m = 4 \)[/tex]:
[tex]\[ y - 32 = 4(x - 4) \][/tex]
4. Distribute the slope on the right-hand side of the equation:
[tex]\[ y - 32 = 4x - 16 \][/tex]
5. Solve for [tex]\( y \)[/tex] to convert the equation to slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y - 32 = 4x - 16 \][/tex]
Add 32 to both sides:
[tex]\[ y = 4x - 16 + 32 \][/tex]
Simplify:
[tex]\[ y = 4x + 16 \][/tex]
Thus, the equation of the line that is parallel to [tex]\( y - 1 = 4(x + 3) \)[/tex] and passes through the point [tex]\( (4, 32) \)[/tex] is:
[tex]\[ y = 4x + 16 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{y = 4x + 16} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.