Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's work through the problem step-by-step to find the equation of the line that is perpendicular and has the same [tex]\( y \)[/tex]-intercept as the given line.
### Step 1: Understanding the equations
We are given four equations:
1. [tex]\( y = \frac{1}{5}x + 1 \)[/tex]
2. [tex]\( y = \frac{1}{5}x + 5 \)[/tex]
3. [tex]\( y = 5x + 1 \)[/tex]
4. [tex]\( y = 5x + 5 \)[/tex]
### Step 2: Identifying the [tex]\( y \)[/tex]-intercepts
For an equation in the form [tex]\( y = mx + b \)[/tex], the [tex]\( y \)[/tex]-intercept is [tex]\( b \)[/tex].
From the given equations:
- [tex]\( y = \frac{1}{5}x + 1 \)[/tex]: [tex]\( y \)[/tex]-intercept is [tex]\( 1 \)[/tex]
- [tex]\( y = \frac{1}{5}x + 5 \)[/tex]: [tex]\( y \)[/tex]-intercept is [tex]\( 5 \)[/tex]
- [tex]\( y = 5x + 1 \)[/tex]: [tex]\( y \)[/tex]-intercept is [tex]\( 1 \)[/tex]
- [tex]\( y = 5x + 5 \)[/tex]: [tex]\( y \)[/tex]-intercept is [tex]\( 5 \)[/tex]
So, the [tex]\( y \)[/tex]-intercepts are [tex]\( 1 \)[/tex] and [tex]\( 5 \)[/tex].
### Step 3: Finding the slope of a perpendicular line
The slope of a line perpendicular to another is the negative reciprocal of the original line's slope.
For the equations [tex]\( y = \frac{1}{5}x + 1 \)[/tex] and [tex]\( y = \frac{1}{5}x + 5 \)[/tex]:
- The slope [tex]\( m \)[/tex] is [tex]\( \frac{1}{5} \)[/tex].
- The perpendicular slope would be the negative reciprocal of [tex]\( \frac{1}{5} \)[/tex], which is [tex]\( -5 \)[/tex].
### Step 4: Forming the equations with the [tex]\( y \)[/tex]-intercepts
Now, we need to form equations with slopes of [tex]\( -5 \)[/tex] and the [tex]\( y \)[/tex]-intercepts we identified [tex]\( (1 \text{ and } 5) \)[/tex].
#### For [tex]\( y \)[/tex]-intercept [tex]\( 1 \)[/tex]:
[tex]\[ y = -5x + 1 \][/tex]
#### For [tex]\( y \)[/tex]-intercept [tex]\( 5 \)[/tex]:
[tex]\[ y = -5x + 5 \][/tex]
### Step 5: Matching the final equation
Comparing these formed equations to the given ones:
- [tex]\( y = 5x + 1 \)[/tex] has the same [tex]\( y \)[/tex]-intercept [tex]\( 1 \)[/tex] but does not match the slope [tex]\( -5 \)[/tex] requirement.
- The other equations also do not match both the perpendicular slope and given [tex]\( y \)[/tex]-intercepts.
Therefore, the equation that matches being perpendicular and having the same [tex]\( y \)[/tex]-intercept as one of the given lines is:
The equation of the line [tex]\( y = 5x + 1 \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{3} \][/tex]
### Step 1: Understanding the equations
We are given four equations:
1. [tex]\( y = \frac{1}{5}x + 1 \)[/tex]
2. [tex]\( y = \frac{1}{5}x + 5 \)[/tex]
3. [tex]\( y = 5x + 1 \)[/tex]
4. [tex]\( y = 5x + 5 \)[/tex]
### Step 2: Identifying the [tex]\( y \)[/tex]-intercepts
For an equation in the form [tex]\( y = mx + b \)[/tex], the [tex]\( y \)[/tex]-intercept is [tex]\( b \)[/tex].
From the given equations:
- [tex]\( y = \frac{1}{5}x + 1 \)[/tex]: [tex]\( y \)[/tex]-intercept is [tex]\( 1 \)[/tex]
- [tex]\( y = \frac{1}{5}x + 5 \)[/tex]: [tex]\( y \)[/tex]-intercept is [tex]\( 5 \)[/tex]
- [tex]\( y = 5x + 1 \)[/tex]: [tex]\( y \)[/tex]-intercept is [tex]\( 1 \)[/tex]
- [tex]\( y = 5x + 5 \)[/tex]: [tex]\( y \)[/tex]-intercept is [tex]\( 5 \)[/tex]
So, the [tex]\( y \)[/tex]-intercepts are [tex]\( 1 \)[/tex] and [tex]\( 5 \)[/tex].
### Step 3: Finding the slope of a perpendicular line
The slope of a line perpendicular to another is the negative reciprocal of the original line's slope.
For the equations [tex]\( y = \frac{1}{5}x + 1 \)[/tex] and [tex]\( y = \frac{1}{5}x + 5 \)[/tex]:
- The slope [tex]\( m \)[/tex] is [tex]\( \frac{1}{5} \)[/tex].
- The perpendicular slope would be the negative reciprocal of [tex]\( \frac{1}{5} \)[/tex], which is [tex]\( -5 \)[/tex].
### Step 4: Forming the equations with the [tex]\( y \)[/tex]-intercepts
Now, we need to form equations with slopes of [tex]\( -5 \)[/tex] and the [tex]\( y \)[/tex]-intercepts we identified [tex]\( (1 \text{ and } 5) \)[/tex].
#### For [tex]\( y \)[/tex]-intercept [tex]\( 1 \)[/tex]:
[tex]\[ y = -5x + 1 \][/tex]
#### For [tex]\( y \)[/tex]-intercept [tex]\( 5 \)[/tex]:
[tex]\[ y = -5x + 5 \][/tex]
### Step 5: Matching the final equation
Comparing these formed equations to the given ones:
- [tex]\( y = 5x + 1 \)[/tex] has the same [tex]\( y \)[/tex]-intercept [tex]\( 1 \)[/tex] but does not match the slope [tex]\( -5 \)[/tex] requirement.
- The other equations also do not match both the perpendicular slope and given [tex]\( y \)[/tex]-intercepts.
Therefore, the equation that matches being perpendicular and having the same [tex]\( y \)[/tex]-intercept as one of the given lines is:
The equation of the line [tex]\( y = 5x + 1 \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{3} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.