Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's work through the problem step-by-step to find the equation of the line that is perpendicular and has the same [tex]\( y \)[/tex]-intercept as the given line.
### Step 1: Understanding the equations
We are given four equations:
1. [tex]\( y = \frac{1}{5}x + 1 \)[/tex]
2. [tex]\( y = \frac{1}{5}x + 5 \)[/tex]
3. [tex]\( y = 5x + 1 \)[/tex]
4. [tex]\( y = 5x + 5 \)[/tex]
### Step 2: Identifying the [tex]\( y \)[/tex]-intercepts
For an equation in the form [tex]\( y = mx + b \)[/tex], the [tex]\( y \)[/tex]-intercept is [tex]\( b \)[/tex].
From the given equations:
- [tex]\( y = \frac{1}{5}x + 1 \)[/tex]: [tex]\( y \)[/tex]-intercept is [tex]\( 1 \)[/tex]
- [tex]\( y = \frac{1}{5}x + 5 \)[/tex]: [tex]\( y \)[/tex]-intercept is [tex]\( 5 \)[/tex]
- [tex]\( y = 5x + 1 \)[/tex]: [tex]\( y \)[/tex]-intercept is [tex]\( 1 \)[/tex]
- [tex]\( y = 5x + 5 \)[/tex]: [tex]\( y \)[/tex]-intercept is [tex]\( 5 \)[/tex]
So, the [tex]\( y \)[/tex]-intercepts are [tex]\( 1 \)[/tex] and [tex]\( 5 \)[/tex].
### Step 3: Finding the slope of a perpendicular line
The slope of a line perpendicular to another is the negative reciprocal of the original line's slope.
For the equations [tex]\( y = \frac{1}{5}x + 1 \)[/tex] and [tex]\( y = \frac{1}{5}x + 5 \)[/tex]:
- The slope [tex]\( m \)[/tex] is [tex]\( \frac{1}{5} \)[/tex].
- The perpendicular slope would be the negative reciprocal of [tex]\( \frac{1}{5} \)[/tex], which is [tex]\( -5 \)[/tex].
### Step 4: Forming the equations with the [tex]\( y \)[/tex]-intercepts
Now, we need to form equations with slopes of [tex]\( -5 \)[/tex] and the [tex]\( y \)[/tex]-intercepts we identified [tex]\( (1 \text{ and } 5) \)[/tex].
#### For [tex]\( y \)[/tex]-intercept [tex]\( 1 \)[/tex]:
[tex]\[ y = -5x + 1 \][/tex]
#### For [tex]\( y \)[/tex]-intercept [tex]\( 5 \)[/tex]:
[tex]\[ y = -5x + 5 \][/tex]
### Step 5: Matching the final equation
Comparing these formed equations to the given ones:
- [tex]\( y = 5x + 1 \)[/tex] has the same [tex]\( y \)[/tex]-intercept [tex]\( 1 \)[/tex] but does not match the slope [tex]\( -5 \)[/tex] requirement.
- The other equations also do not match both the perpendicular slope and given [tex]\( y \)[/tex]-intercepts.
Therefore, the equation that matches being perpendicular and having the same [tex]\( y \)[/tex]-intercept as one of the given lines is:
The equation of the line [tex]\( y = 5x + 1 \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{3} \][/tex]
### Step 1: Understanding the equations
We are given four equations:
1. [tex]\( y = \frac{1}{5}x + 1 \)[/tex]
2. [tex]\( y = \frac{1}{5}x + 5 \)[/tex]
3. [tex]\( y = 5x + 1 \)[/tex]
4. [tex]\( y = 5x + 5 \)[/tex]
### Step 2: Identifying the [tex]\( y \)[/tex]-intercepts
For an equation in the form [tex]\( y = mx + b \)[/tex], the [tex]\( y \)[/tex]-intercept is [tex]\( b \)[/tex].
From the given equations:
- [tex]\( y = \frac{1}{5}x + 1 \)[/tex]: [tex]\( y \)[/tex]-intercept is [tex]\( 1 \)[/tex]
- [tex]\( y = \frac{1}{5}x + 5 \)[/tex]: [tex]\( y \)[/tex]-intercept is [tex]\( 5 \)[/tex]
- [tex]\( y = 5x + 1 \)[/tex]: [tex]\( y \)[/tex]-intercept is [tex]\( 1 \)[/tex]
- [tex]\( y = 5x + 5 \)[/tex]: [tex]\( y \)[/tex]-intercept is [tex]\( 5 \)[/tex]
So, the [tex]\( y \)[/tex]-intercepts are [tex]\( 1 \)[/tex] and [tex]\( 5 \)[/tex].
### Step 3: Finding the slope of a perpendicular line
The slope of a line perpendicular to another is the negative reciprocal of the original line's slope.
For the equations [tex]\( y = \frac{1}{5}x + 1 \)[/tex] and [tex]\( y = \frac{1}{5}x + 5 \)[/tex]:
- The slope [tex]\( m \)[/tex] is [tex]\( \frac{1}{5} \)[/tex].
- The perpendicular slope would be the negative reciprocal of [tex]\( \frac{1}{5} \)[/tex], which is [tex]\( -5 \)[/tex].
### Step 4: Forming the equations with the [tex]\( y \)[/tex]-intercepts
Now, we need to form equations with slopes of [tex]\( -5 \)[/tex] and the [tex]\( y \)[/tex]-intercepts we identified [tex]\( (1 \text{ and } 5) \)[/tex].
#### For [tex]\( y \)[/tex]-intercept [tex]\( 1 \)[/tex]:
[tex]\[ y = -5x + 1 \][/tex]
#### For [tex]\( y \)[/tex]-intercept [tex]\( 5 \)[/tex]:
[tex]\[ y = -5x + 5 \][/tex]
### Step 5: Matching the final equation
Comparing these formed equations to the given ones:
- [tex]\( y = 5x + 1 \)[/tex] has the same [tex]\( y \)[/tex]-intercept [tex]\( 1 \)[/tex] but does not match the slope [tex]\( -5 \)[/tex] requirement.
- The other equations also do not match both the perpendicular slope and given [tex]\( y \)[/tex]-intercepts.
Therefore, the equation that matches being perpendicular and having the same [tex]\( y \)[/tex]-intercept as one of the given lines is:
The equation of the line [tex]\( y = 5x + 1 \)[/tex].
Thus, the correct answer is:
[tex]\[ \boxed{3} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.