Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To analyze the function [tex]\( f(x) = -2x^3 + 4x^2 + 5x \)[/tex] in detail, we'll go through several steps:
1. Function Analysis:
- Degree and Leading Coefficient:
The given function is a polynomial of degree 3, with the leading term being [tex]\(-2x^3\)[/tex]. The leading coefficient is [tex]\(-2\)[/tex], which indicates that the function has a cubic behavior and is oriented downwards as [tex]\( x \to \infty \)[/tex].
2. First Derivative [tex]\( f'(x) \)[/tex]:
The first derivative gives us the rate of change of the function and helps us find critical points.
[tex]\[ f'(x) = \frac{d}{dx}(-2x^3 + 4x^2 + 5x) \][/tex]
Calculating the derivative term by term:
[tex]\[ f'(x) = -6x^2 + 8x + 5 \][/tex]
3. Finding Critical Points:
To find the critical points, set the first derivative equal to zero:
[tex]\[ -6x^2 + 8x + 5 = 0 \][/tex]
This is a quadratic equation in standard form [tex]\( ax^2 + bx + c = 0 \)[/tex]. Solve it using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].
Here, [tex]\(a = -6\)[/tex], [tex]\(b = 8\)[/tex], and [tex]\(c = 5\)[/tex]:
[tex]\[ x = \frac{-8 \pm \sqrt{8^2 - 4(-6)(5)}}{2(-6)} \][/tex]
[tex]\[ x = \frac{-8 \pm \sqrt{64 + 120}}{-12} \][/tex]
[tex]\[ x = \frac{-8 \pm \sqrt{184}}{-12} \][/tex]
[tex]\[ x = \frac{-8 \pm 2\sqrt{46}}{-12} \][/tex]
[tex]\[ x = \frac{-8 \pm 2\sqrt{46}}{-12} = \frac{4 \pm \sqrt{46}}{6} \][/tex]
So, the critical points are:
[tex]\[ x = \frac{4 + \sqrt{46}}{6}, \quad x = \frac{4 - \sqrt{46}}{6} \][/tex]
4. Second Derivative [tex]\( f''(x) \)[/tex]:
The second derivative helps us determine the concavity of the function and identify points of inflection.
[tex]\[ f''(x) = \frac{d}{dx}(-6x^2 + 8x + 5) \][/tex]
[tex]\[ f''(x) = -12x + 8 \][/tex]
5. Concavity and Inflection Points:
Set the second derivative equal to zero to find potential inflection points:
[tex]\[ -12x + 8 = 0 \][/tex]
[tex]\[ x = \frac{8}{12} = \frac{2}{3} \][/tex]
To determine concavity, check the sign of [tex]\( f''(x) \)[/tex] before and after [tex]\( x = \frac{2}{3} \)[/tex]:
- For [tex]\( x < \frac{2}{3} \)[/tex]: [tex]\( f''(x) > 0 \)[/tex] (function concave up).
- For [tex]\( x > \frac{2}{3} \)[/tex]: [tex]\( f''(x) < 0 \)[/tex] (function concave down).
Hence, [tex]\( x = \frac{2}{3} \)[/tex] is a point of inflection.
6. Behavior at Infinity:
As [tex]\( x \to \infty \)[/tex] or [tex]\( x \to -\infty \)[/tex], the leading term [tex]\(-2x^3\)[/tex] dominates the behavior of the function.
- As [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex].
7. Graph Sketching:
Finally, use the critical points, points of inflection, concavity, and end behavior to sketch the graph of the function [tex]\( f(x) \)[/tex]:
- The function decreases without bound as [tex]\( x \to \infty \)[/tex] and increases without bound as [tex]\( x \to -\infty \)[/tex].
- It has critical points at [tex]\( x = \frac{4 + \sqrt{46}}{6} \)[/tex] and [tex]\( x = \frac{4 - \sqrt{46}}{6} \)[/tex].
- Inflection point at [tex]\( x = \frac{2}{3} \)[/tex].
In conclusion, the given function [tex]\( f(x) = -2x^3 + 4x^2 + 5x \)[/tex] is a cubic polynomial with specified critical points and an inflection point that help determine its graph and behavior.
1. Function Analysis:
- Degree and Leading Coefficient:
The given function is a polynomial of degree 3, with the leading term being [tex]\(-2x^3\)[/tex]. The leading coefficient is [tex]\(-2\)[/tex], which indicates that the function has a cubic behavior and is oriented downwards as [tex]\( x \to \infty \)[/tex].
2. First Derivative [tex]\( f'(x) \)[/tex]:
The first derivative gives us the rate of change of the function and helps us find critical points.
[tex]\[ f'(x) = \frac{d}{dx}(-2x^3 + 4x^2 + 5x) \][/tex]
Calculating the derivative term by term:
[tex]\[ f'(x) = -6x^2 + 8x + 5 \][/tex]
3. Finding Critical Points:
To find the critical points, set the first derivative equal to zero:
[tex]\[ -6x^2 + 8x + 5 = 0 \][/tex]
This is a quadratic equation in standard form [tex]\( ax^2 + bx + c = 0 \)[/tex]. Solve it using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].
Here, [tex]\(a = -6\)[/tex], [tex]\(b = 8\)[/tex], and [tex]\(c = 5\)[/tex]:
[tex]\[ x = \frac{-8 \pm \sqrt{8^2 - 4(-6)(5)}}{2(-6)} \][/tex]
[tex]\[ x = \frac{-8 \pm \sqrt{64 + 120}}{-12} \][/tex]
[tex]\[ x = \frac{-8 \pm \sqrt{184}}{-12} \][/tex]
[tex]\[ x = \frac{-8 \pm 2\sqrt{46}}{-12} \][/tex]
[tex]\[ x = \frac{-8 \pm 2\sqrt{46}}{-12} = \frac{4 \pm \sqrt{46}}{6} \][/tex]
So, the critical points are:
[tex]\[ x = \frac{4 + \sqrt{46}}{6}, \quad x = \frac{4 - \sqrt{46}}{6} \][/tex]
4. Second Derivative [tex]\( f''(x) \)[/tex]:
The second derivative helps us determine the concavity of the function and identify points of inflection.
[tex]\[ f''(x) = \frac{d}{dx}(-6x^2 + 8x + 5) \][/tex]
[tex]\[ f''(x) = -12x + 8 \][/tex]
5. Concavity and Inflection Points:
Set the second derivative equal to zero to find potential inflection points:
[tex]\[ -12x + 8 = 0 \][/tex]
[tex]\[ x = \frac{8}{12} = \frac{2}{3} \][/tex]
To determine concavity, check the sign of [tex]\( f''(x) \)[/tex] before and after [tex]\( x = \frac{2}{3} \)[/tex]:
- For [tex]\( x < \frac{2}{3} \)[/tex]: [tex]\( f''(x) > 0 \)[/tex] (function concave up).
- For [tex]\( x > \frac{2}{3} \)[/tex]: [tex]\( f''(x) < 0 \)[/tex] (function concave down).
Hence, [tex]\( x = \frac{2}{3} \)[/tex] is a point of inflection.
6. Behavior at Infinity:
As [tex]\( x \to \infty \)[/tex] or [tex]\( x \to -\infty \)[/tex], the leading term [tex]\(-2x^3\)[/tex] dominates the behavior of the function.
- As [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex].
7. Graph Sketching:
Finally, use the critical points, points of inflection, concavity, and end behavior to sketch the graph of the function [tex]\( f(x) \)[/tex]:
- The function decreases without bound as [tex]\( x \to \infty \)[/tex] and increases without bound as [tex]\( x \to -\infty \)[/tex].
- It has critical points at [tex]\( x = \frac{4 + \sqrt{46}}{6} \)[/tex] and [tex]\( x = \frac{4 - \sqrt{46}}{6} \)[/tex].
- Inflection point at [tex]\( x = \frac{2}{3} \)[/tex].
In conclusion, the given function [tex]\( f(x) = -2x^3 + 4x^2 + 5x \)[/tex] is a cubic polynomial with specified critical points and an inflection point that help determine its graph and behavior.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.