Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To analyze the function [tex]\( f(x) = -2x^3 + 4x^2 + 5x \)[/tex] in detail, we'll go through several steps:
1. Function Analysis:
- Degree and Leading Coefficient:
The given function is a polynomial of degree 3, with the leading term being [tex]\(-2x^3\)[/tex]. The leading coefficient is [tex]\(-2\)[/tex], which indicates that the function has a cubic behavior and is oriented downwards as [tex]\( x \to \infty \)[/tex].
2. First Derivative [tex]\( f'(x) \)[/tex]:
The first derivative gives us the rate of change of the function and helps us find critical points.
[tex]\[ f'(x) = \frac{d}{dx}(-2x^3 + 4x^2 + 5x) \][/tex]
Calculating the derivative term by term:
[tex]\[ f'(x) = -6x^2 + 8x + 5 \][/tex]
3. Finding Critical Points:
To find the critical points, set the first derivative equal to zero:
[tex]\[ -6x^2 + 8x + 5 = 0 \][/tex]
This is a quadratic equation in standard form [tex]\( ax^2 + bx + c = 0 \)[/tex]. Solve it using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].
Here, [tex]\(a = -6\)[/tex], [tex]\(b = 8\)[/tex], and [tex]\(c = 5\)[/tex]:
[tex]\[ x = \frac{-8 \pm \sqrt{8^2 - 4(-6)(5)}}{2(-6)} \][/tex]
[tex]\[ x = \frac{-8 \pm \sqrt{64 + 120}}{-12} \][/tex]
[tex]\[ x = \frac{-8 \pm \sqrt{184}}{-12} \][/tex]
[tex]\[ x = \frac{-8 \pm 2\sqrt{46}}{-12} \][/tex]
[tex]\[ x = \frac{-8 \pm 2\sqrt{46}}{-12} = \frac{4 \pm \sqrt{46}}{6} \][/tex]
So, the critical points are:
[tex]\[ x = \frac{4 + \sqrt{46}}{6}, \quad x = \frac{4 - \sqrt{46}}{6} \][/tex]
4. Second Derivative [tex]\( f''(x) \)[/tex]:
The second derivative helps us determine the concavity of the function and identify points of inflection.
[tex]\[ f''(x) = \frac{d}{dx}(-6x^2 + 8x + 5) \][/tex]
[tex]\[ f''(x) = -12x + 8 \][/tex]
5. Concavity and Inflection Points:
Set the second derivative equal to zero to find potential inflection points:
[tex]\[ -12x + 8 = 0 \][/tex]
[tex]\[ x = \frac{8}{12} = \frac{2}{3} \][/tex]
To determine concavity, check the sign of [tex]\( f''(x) \)[/tex] before and after [tex]\( x = \frac{2}{3} \)[/tex]:
- For [tex]\( x < \frac{2}{3} \)[/tex]: [tex]\( f''(x) > 0 \)[/tex] (function concave up).
- For [tex]\( x > \frac{2}{3} \)[/tex]: [tex]\( f''(x) < 0 \)[/tex] (function concave down).
Hence, [tex]\( x = \frac{2}{3} \)[/tex] is a point of inflection.
6. Behavior at Infinity:
As [tex]\( x \to \infty \)[/tex] or [tex]\( x \to -\infty \)[/tex], the leading term [tex]\(-2x^3\)[/tex] dominates the behavior of the function.
- As [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex].
7. Graph Sketching:
Finally, use the critical points, points of inflection, concavity, and end behavior to sketch the graph of the function [tex]\( f(x) \)[/tex]:
- The function decreases without bound as [tex]\( x \to \infty \)[/tex] and increases without bound as [tex]\( x \to -\infty \)[/tex].
- It has critical points at [tex]\( x = \frac{4 + \sqrt{46}}{6} \)[/tex] and [tex]\( x = \frac{4 - \sqrt{46}}{6} \)[/tex].
- Inflection point at [tex]\( x = \frac{2}{3} \)[/tex].
In conclusion, the given function [tex]\( f(x) = -2x^3 + 4x^2 + 5x \)[/tex] is a cubic polynomial with specified critical points and an inflection point that help determine its graph and behavior.
1. Function Analysis:
- Degree and Leading Coefficient:
The given function is a polynomial of degree 3, with the leading term being [tex]\(-2x^3\)[/tex]. The leading coefficient is [tex]\(-2\)[/tex], which indicates that the function has a cubic behavior and is oriented downwards as [tex]\( x \to \infty \)[/tex].
2. First Derivative [tex]\( f'(x) \)[/tex]:
The first derivative gives us the rate of change of the function and helps us find critical points.
[tex]\[ f'(x) = \frac{d}{dx}(-2x^3 + 4x^2 + 5x) \][/tex]
Calculating the derivative term by term:
[tex]\[ f'(x) = -6x^2 + 8x + 5 \][/tex]
3. Finding Critical Points:
To find the critical points, set the first derivative equal to zero:
[tex]\[ -6x^2 + 8x + 5 = 0 \][/tex]
This is a quadratic equation in standard form [tex]\( ax^2 + bx + c = 0 \)[/tex]. Solve it using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex].
Here, [tex]\(a = -6\)[/tex], [tex]\(b = 8\)[/tex], and [tex]\(c = 5\)[/tex]:
[tex]\[ x = \frac{-8 \pm \sqrt{8^2 - 4(-6)(5)}}{2(-6)} \][/tex]
[tex]\[ x = \frac{-8 \pm \sqrt{64 + 120}}{-12} \][/tex]
[tex]\[ x = \frac{-8 \pm \sqrt{184}}{-12} \][/tex]
[tex]\[ x = \frac{-8 \pm 2\sqrt{46}}{-12} \][/tex]
[tex]\[ x = \frac{-8 \pm 2\sqrt{46}}{-12} = \frac{4 \pm \sqrt{46}}{6} \][/tex]
So, the critical points are:
[tex]\[ x = \frac{4 + \sqrt{46}}{6}, \quad x = \frac{4 - \sqrt{46}}{6} \][/tex]
4. Second Derivative [tex]\( f''(x) \)[/tex]:
The second derivative helps us determine the concavity of the function and identify points of inflection.
[tex]\[ f''(x) = \frac{d}{dx}(-6x^2 + 8x + 5) \][/tex]
[tex]\[ f''(x) = -12x + 8 \][/tex]
5. Concavity and Inflection Points:
Set the second derivative equal to zero to find potential inflection points:
[tex]\[ -12x + 8 = 0 \][/tex]
[tex]\[ x = \frac{8}{12} = \frac{2}{3} \][/tex]
To determine concavity, check the sign of [tex]\( f''(x) \)[/tex] before and after [tex]\( x = \frac{2}{3} \)[/tex]:
- For [tex]\( x < \frac{2}{3} \)[/tex]: [tex]\( f''(x) > 0 \)[/tex] (function concave up).
- For [tex]\( x > \frac{2}{3} \)[/tex]: [tex]\( f''(x) < 0 \)[/tex] (function concave down).
Hence, [tex]\( x = \frac{2}{3} \)[/tex] is a point of inflection.
6. Behavior at Infinity:
As [tex]\( x \to \infty \)[/tex] or [tex]\( x \to -\infty \)[/tex], the leading term [tex]\(-2x^3\)[/tex] dominates the behavior of the function.
- As [tex]\( x \to \infty \)[/tex], [tex]\( f(x) \to -\infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex], [tex]\( f(x) \to \infty \)[/tex].
7. Graph Sketching:
Finally, use the critical points, points of inflection, concavity, and end behavior to sketch the graph of the function [tex]\( f(x) \)[/tex]:
- The function decreases without bound as [tex]\( x \to \infty \)[/tex] and increases without bound as [tex]\( x \to -\infty \)[/tex].
- It has critical points at [tex]\( x = \frac{4 + \sqrt{46}}{6} \)[/tex] and [tex]\( x = \frac{4 - \sqrt{46}}{6} \)[/tex].
- Inflection point at [tex]\( x = \frac{2}{3} \)[/tex].
In conclusion, the given function [tex]\( f(x) = -2x^3 + 4x^2 + 5x \)[/tex] is a cubic polynomial with specified critical points and an inflection point that help determine its graph and behavior.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.