Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the problem, we'll analyze the function [tex]\( f(x) = -x^3 + 3x^2 - x - 1 \)[/tex].
### Step 1: Finding the Turning Points
To find the turning points, we need to calculate the first derivative of the function and solve for [tex]\( x \)[/tex] where this derivative is zero.
The first derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = \frac{d}{dx} (-x^3 + 3x^2 - x - 1) \][/tex]
[tex]\[ f'(x) = -3x^2 + 6x - 1 \][/tex]
We set the first derivative equal to zero to find the critical points:
[tex]\[ -3x^2 + 6x - 1 = 0 \][/tex]
Solving this quadratic equation, we find the critical points (turning points):
[tex]\[ x = \frac{6 \pm \sqrt{36 - 4 \cdot (-3) \cdot (-1)}}{2 \cdot (-3)} \][/tex]
[tex]\[ x = \frac{6 \pm \sqrt{36 - 12}}{-6} \][/tex]
[tex]\[ x = \frac{6 \pm \sqrt{24}}{-6} \][/tex]
[tex]\[ x = \frac{6 \pm 2\sqrt{6}}{-6} \][/tex]
[tex]\[ x = 1 - \frac{\sqrt{6}}{3}, \quad x = 1 + \frac{\sqrt{6}}{3} \][/tex]
### Step 2: Determining the Nature of the Turning Points
We evaluate the second derivative to determine the nature of the turning points.
The second derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f''(x) = \frac{d}{dx} (-3x^2 + 6x - 1) \][/tex]
[tex]\[ f''(x) = -6x + 6 \][/tex]
We substitute the turning points into [tex]\( f''(x) \)[/tex]:
For [tex]\( x = 1 - \frac{\sqrt{6}}{3} \)[/tex]:
[tex]\[ f''\left(1 - \frac{\sqrt{6}}{3}\right) = -6\left(1 - \frac{\sqrt{6}}{3}\right) + 6 = -6 + 2\sqrt{6} + 6 = 2\sqrt{6} \][/tex]
Since [tex]\( f''\left(1 - \frac{\sqrt{6}}{3}\right) > 0 \)[/tex], this turning point is a local minimum.
For [tex]\( x = 1 + \frac{\sqrt{6}}{3} \)[/tex]:
[tex]\[ f''\left(1 + \frac{\sqrt{6}}{3}\right) = -6\left(1 + \frac{\sqrt{6}}{3}\right) + 6 = -6 - 2\sqrt{6} + 6 = -2\sqrt{6} \][/tex]
Since [tex]\( f''\left(1 + \frac{\sqrt{6}}{3}\right) < 0 \)[/tex], this turning point is a local maximum.
### Step 3: Finding the [tex]\( x \)[/tex]-Intercepts
To find the [tex]\( x \)[/tex]-intercepts, we solve [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ -x^3 + 3x^2 - x - 1 = 0 \][/tex]
Solving this cubic equation, we get the [tex]\( x \)[/tex]-intercepts:
[tex]\[ x = 1, \quad x = 1 - \sqrt{2}, \quad x = 1 + \sqrt{2} \][/tex]
### Step 4: Maximum Number of [tex]\( x \)[/tex]-Intercepts and Turning Points for a Cubic Function
For a cubic function [tex]\( ax^3 + bx^2 + cx + d \)[/tex]:
- The maximum number of [tex]\( x \)[/tex]-intercepts is 3.
- The maximum number of turning points is 2.
### Summary
- The function [tex]\( f(x) = -x^3 + 3x^2 - x - 1 \)[/tex] has 2 turning points.
- The turning points are at [tex]\( x = 1 - \frac{\sqrt{6}}{3} \)[/tex] (local minimum) and [tex]\( x = 1 + \frac{\sqrt{6}}{3} \)[/tex] (local maximum).
- The function has 3 [tex]\( x \)[/tex]-intercepts at [tex]\( x = 1, \quad x = 1 - \sqrt{2}, \quad x = 1 + \sqrt{2} \)[/tex].
- These results align with the general properties of cubic functions, which can have at most 3 [tex]\( x \)[/tex]-intercepts and 2 turning points.
### Step 1: Finding the Turning Points
To find the turning points, we need to calculate the first derivative of the function and solve for [tex]\( x \)[/tex] where this derivative is zero.
The first derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f'(x) = \frac{d}{dx} (-x^3 + 3x^2 - x - 1) \][/tex]
[tex]\[ f'(x) = -3x^2 + 6x - 1 \][/tex]
We set the first derivative equal to zero to find the critical points:
[tex]\[ -3x^2 + 6x - 1 = 0 \][/tex]
Solving this quadratic equation, we find the critical points (turning points):
[tex]\[ x = \frac{6 \pm \sqrt{36 - 4 \cdot (-3) \cdot (-1)}}{2 \cdot (-3)} \][/tex]
[tex]\[ x = \frac{6 \pm \sqrt{36 - 12}}{-6} \][/tex]
[tex]\[ x = \frac{6 \pm \sqrt{24}}{-6} \][/tex]
[tex]\[ x = \frac{6 \pm 2\sqrt{6}}{-6} \][/tex]
[tex]\[ x = 1 - \frac{\sqrt{6}}{3}, \quad x = 1 + \frac{\sqrt{6}}{3} \][/tex]
### Step 2: Determining the Nature of the Turning Points
We evaluate the second derivative to determine the nature of the turning points.
The second derivative of [tex]\( f(x) \)[/tex] is:
[tex]\[ f''(x) = \frac{d}{dx} (-3x^2 + 6x - 1) \][/tex]
[tex]\[ f''(x) = -6x + 6 \][/tex]
We substitute the turning points into [tex]\( f''(x) \)[/tex]:
For [tex]\( x = 1 - \frac{\sqrt{6}}{3} \)[/tex]:
[tex]\[ f''\left(1 - \frac{\sqrt{6}}{3}\right) = -6\left(1 - \frac{\sqrt{6}}{3}\right) + 6 = -6 + 2\sqrt{6} + 6 = 2\sqrt{6} \][/tex]
Since [tex]\( f''\left(1 - \frac{\sqrt{6}}{3}\right) > 0 \)[/tex], this turning point is a local minimum.
For [tex]\( x = 1 + \frac{\sqrt{6}}{3} \)[/tex]:
[tex]\[ f''\left(1 + \frac{\sqrt{6}}{3}\right) = -6\left(1 + \frac{\sqrt{6}}{3}\right) + 6 = -6 - 2\sqrt{6} + 6 = -2\sqrt{6} \][/tex]
Since [tex]\( f''\left(1 + \frac{\sqrt{6}}{3}\right) < 0 \)[/tex], this turning point is a local maximum.
### Step 3: Finding the [tex]\( x \)[/tex]-Intercepts
To find the [tex]\( x \)[/tex]-intercepts, we solve [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ -x^3 + 3x^2 - x - 1 = 0 \][/tex]
Solving this cubic equation, we get the [tex]\( x \)[/tex]-intercepts:
[tex]\[ x = 1, \quad x = 1 - \sqrt{2}, \quad x = 1 + \sqrt{2} \][/tex]
### Step 4: Maximum Number of [tex]\( x \)[/tex]-Intercepts and Turning Points for a Cubic Function
For a cubic function [tex]\( ax^3 + bx^2 + cx + d \)[/tex]:
- The maximum number of [tex]\( x \)[/tex]-intercepts is 3.
- The maximum number of turning points is 2.
### Summary
- The function [tex]\( f(x) = -x^3 + 3x^2 - x - 1 \)[/tex] has 2 turning points.
- The turning points are at [tex]\( x = 1 - \frac{\sqrt{6}}{3} \)[/tex] (local minimum) and [tex]\( x = 1 + \frac{\sqrt{6}}{3} \)[/tex] (local maximum).
- The function has 3 [tex]\( x \)[/tex]-intercepts at [tex]\( x = 1, \quad x = 1 - \sqrt{2}, \quad x = 1 + \sqrt{2} \)[/tex].
- These results align with the general properties of cubic functions, which can have at most 3 [tex]\( x \)[/tex]-intercepts and 2 turning points.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.