Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the type of rotation that maps point [tex]\( K(24, -15) \)[/tex] to [tex]\( K'(-15, -24) \)[/tex], we need to analyze how the coordinates change under various rotations.
1. 90 degrees clockwise rotation:
- This transforms a point [tex]\( (x, y) \)[/tex] to [tex]\( (y, -x) \)[/tex].
- Applying this to [tex]\( K(24, -15) \)[/tex]: [tex]\( (24, -15) \)[/tex] becomes [tex]\( (-15, -24) \)[/tex].
2. 270 degrees clockwise rotation:
- This is equivalent to a 90 degrees counterclockwise rotation, transforming [tex]\( (x, y) \)[/tex] to [tex]\( (-y, x) \)[/tex].
- Applying this to [tex]\( K(24, -15) \)[/tex]: [tex]\( (24, -15) \)[/tex] becomes [tex]\( (15, 24) \)[/tex].
3. 180 degrees rotation:
- This transforms a point [tex]\( (x, y) \)[/tex] to [tex]\( (-x, -y) \)[/tex].
- Applying this to [tex]\( K(24, -15) \)[/tex]: [tex]\( (24, -15) \)[/tex] becomes [tex]\( (-24, 15) \)[/tex].
4. 90 degrees counterclockwise rotation:
- This transforms a point [tex]\( (x, y) \)[/tex] to [tex]\( (-y, x) \)[/tex].
- Applying this to [tex]\( K(24, -15) \)[/tex]: [tex]\( (24, -15) \)[/tex] becomes [tex]\( (15, 24) \)[/tex].
On examining the transformations, we see that the coordinates transform [tex]\( K(24, -15) \)[/tex] to [tex]\( K'(-15, -24) \)[/tex] correctly through a 90 degrees clockwise rotation. Thus, the correct description of the rotation that maps [tex]\( K \)[/tex] to [tex]\( K' \)[/tex] is:
90 degrees clockwise rotation.
1. 90 degrees clockwise rotation:
- This transforms a point [tex]\( (x, y) \)[/tex] to [tex]\( (y, -x) \)[/tex].
- Applying this to [tex]\( K(24, -15) \)[/tex]: [tex]\( (24, -15) \)[/tex] becomes [tex]\( (-15, -24) \)[/tex].
2. 270 degrees clockwise rotation:
- This is equivalent to a 90 degrees counterclockwise rotation, transforming [tex]\( (x, y) \)[/tex] to [tex]\( (-y, x) \)[/tex].
- Applying this to [tex]\( K(24, -15) \)[/tex]: [tex]\( (24, -15) \)[/tex] becomes [tex]\( (15, 24) \)[/tex].
3. 180 degrees rotation:
- This transforms a point [tex]\( (x, y) \)[/tex] to [tex]\( (-x, -y) \)[/tex].
- Applying this to [tex]\( K(24, -15) \)[/tex]: [tex]\( (24, -15) \)[/tex] becomes [tex]\( (-24, 15) \)[/tex].
4. 90 degrees counterclockwise rotation:
- This transforms a point [tex]\( (x, y) \)[/tex] to [tex]\( (-y, x) \)[/tex].
- Applying this to [tex]\( K(24, -15) \)[/tex]: [tex]\( (24, -15) \)[/tex] becomes [tex]\( (15, 24) \)[/tex].
On examining the transformations, we see that the coordinates transform [tex]\( K(24, -15) \)[/tex] to [tex]\( K'(-15, -24) \)[/tex] correctly through a 90 degrees clockwise rotation. Thus, the correct description of the rotation that maps [tex]\( K \)[/tex] to [tex]\( K' \)[/tex] is:
90 degrees clockwise rotation.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.