Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the valid mole ratio from the given balanced chemical equation:
[tex]\[ 2 C_3H_6 + 9 O_2 \rightarrow 6 CO_2 + 6 H_2O \][/tex]
We'll compare each of the provided ratios with the stoichiometric coefficients in the balanced equation. Here's the step-by-step analysis:
1. Option 1: [tex]\(\frac{1 \text{ mol } C_3H_6}{2 \text{ mol } CO_2}\)[/tex]
- According to the balanced equation, 2 moles of [tex]\(C_3H_6\)[/tex] produce 6 moles of [tex]\(CO_2\)[/tex].
- Simplifying the ratio, [tex]\(\frac{2 \text{ moles } C_3H_6}{6 \text{ moles } CO_2} = \frac{1 \text{ mol } C_3H_6}{3 \text{ moles } CO_2}\)[/tex].
- Therefore, [tex]\(\frac{1 \text{ mol } C_3H_6}{2 \text{ moles } CO_2}\)[/tex] does not match this ratio.
2. Option 2: [tex]\(\frac{6 \text{ mol } H_2O}{9 \text{ mol } O_2}\)[/tex]
- According to the balanced equation, 9 moles of [tex]\(O_2\)[/tex] react to produce 6 moles of [tex]\(H_2O\)[/tex].
- The ratio [tex]\(\frac{6 \text{ mol } H_2O}{9 \text{ mol } O_2}\)[/tex] correctly reflects the stoichiometry in the given balanced equation.
- This ratio is valid.
3. Option 3: [tex]\(\frac{2 \text{ mol } C_3H_6}{6 \text{ mol } O_2}\)[/tex]
- According to the balanced equation, 2 moles of [tex]\(C_3H_6\)[/tex] react with 9 moles of [tex]\(O_2\)[/tex].
- Simplifying the ratio, [tex]\(\frac{2 \text{ moles } C_3H_6}{9 \text{ moles } O_2}\)[/tex].
- Therefore, [tex]\(\frac{2 \text{ moles } C_3H_6}{6 \text{ moles } O_2}\)[/tex] does not match this ratio.
4. Option 4: [tex]\(\frac{3 \text{ mol } H_2O}{2 \text{ mol } CO_2}\)[/tex]
- According to the balanced equation, 6 moles of [tex]\(CO_2\)[/tex] are produced alongside 6 moles of [tex]\(H_2O\)[/tex].
- Simplifying the ratio, [tex]\(\frac{6 \text{ moles } H_2O}{6 \text{ moles } CO_2} = \frac{1 \text{ mol } H_2O}{1 \text{ mol } CO_2}\)[/tex].
- Therefore, [tex]\(\frac{3 \text{ moles } H_2O}{2 \text{ moles } CO_2}\)[/tex] does not match this ratio.
Among the given options, the valid mole ratio from the balanced equation is:
[tex]\[ \boxed{\frac{6 \text{ mol } H_2O}{9 \text{ mol } O_2}} \][/tex]
[tex]\[ 2 C_3H_6 + 9 O_2 \rightarrow 6 CO_2 + 6 H_2O \][/tex]
We'll compare each of the provided ratios with the stoichiometric coefficients in the balanced equation. Here's the step-by-step analysis:
1. Option 1: [tex]\(\frac{1 \text{ mol } C_3H_6}{2 \text{ mol } CO_2}\)[/tex]
- According to the balanced equation, 2 moles of [tex]\(C_3H_6\)[/tex] produce 6 moles of [tex]\(CO_2\)[/tex].
- Simplifying the ratio, [tex]\(\frac{2 \text{ moles } C_3H_6}{6 \text{ moles } CO_2} = \frac{1 \text{ mol } C_3H_6}{3 \text{ moles } CO_2}\)[/tex].
- Therefore, [tex]\(\frac{1 \text{ mol } C_3H_6}{2 \text{ moles } CO_2}\)[/tex] does not match this ratio.
2. Option 2: [tex]\(\frac{6 \text{ mol } H_2O}{9 \text{ mol } O_2}\)[/tex]
- According to the balanced equation, 9 moles of [tex]\(O_2\)[/tex] react to produce 6 moles of [tex]\(H_2O\)[/tex].
- The ratio [tex]\(\frac{6 \text{ mol } H_2O}{9 \text{ mol } O_2}\)[/tex] correctly reflects the stoichiometry in the given balanced equation.
- This ratio is valid.
3. Option 3: [tex]\(\frac{2 \text{ mol } C_3H_6}{6 \text{ mol } O_2}\)[/tex]
- According to the balanced equation, 2 moles of [tex]\(C_3H_6\)[/tex] react with 9 moles of [tex]\(O_2\)[/tex].
- Simplifying the ratio, [tex]\(\frac{2 \text{ moles } C_3H_6}{9 \text{ moles } O_2}\)[/tex].
- Therefore, [tex]\(\frac{2 \text{ moles } C_3H_6}{6 \text{ moles } O_2}\)[/tex] does not match this ratio.
4. Option 4: [tex]\(\frac{3 \text{ mol } H_2O}{2 \text{ mol } CO_2}\)[/tex]
- According to the balanced equation, 6 moles of [tex]\(CO_2\)[/tex] are produced alongside 6 moles of [tex]\(H_2O\)[/tex].
- Simplifying the ratio, [tex]\(\frac{6 \text{ moles } H_2O}{6 \text{ moles } CO_2} = \frac{1 \text{ mol } H_2O}{1 \text{ mol } CO_2}\)[/tex].
- Therefore, [tex]\(\frac{3 \text{ moles } H_2O}{2 \text{ moles } CO_2}\)[/tex] does not match this ratio.
Among the given options, the valid mole ratio from the balanced equation is:
[tex]\[ \boxed{\frac{6 \text{ mol } H_2O}{9 \text{ mol } O_2}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.