Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the valid mole ratio from the given balanced chemical equation:
[tex]\[ 2 C_3H_6 + 9 O_2 \rightarrow 6 CO_2 + 6 H_2O \][/tex]
We'll compare each of the provided ratios with the stoichiometric coefficients in the balanced equation. Here's the step-by-step analysis:
1. Option 1: [tex]\(\frac{1 \text{ mol } C_3H_6}{2 \text{ mol } CO_2}\)[/tex]
- According to the balanced equation, 2 moles of [tex]\(C_3H_6\)[/tex] produce 6 moles of [tex]\(CO_2\)[/tex].
- Simplifying the ratio, [tex]\(\frac{2 \text{ moles } C_3H_6}{6 \text{ moles } CO_2} = \frac{1 \text{ mol } C_3H_6}{3 \text{ moles } CO_2}\)[/tex].
- Therefore, [tex]\(\frac{1 \text{ mol } C_3H_6}{2 \text{ moles } CO_2}\)[/tex] does not match this ratio.
2. Option 2: [tex]\(\frac{6 \text{ mol } H_2O}{9 \text{ mol } O_2}\)[/tex]
- According to the balanced equation, 9 moles of [tex]\(O_2\)[/tex] react to produce 6 moles of [tex]\(H_2O\)[/tex].
- The ratio [tex]\(\frac{6 \text{ mol } H_2O}{9 \text{ mol } O_2}\)[/tex] correctly reflects the stoichiometry in the given balanced equation.
- This ratio is valid.
3. Option 3: [tex]\(\frac{2 \text{ mol } C_3H_6}{6 \text{ mol } O_2}\)[/tex]
- According to the balanced equation, 2 moles of [tex]\(C_3H_6\)[/tex] react with 9 moles of [tex]\(O_2\)[/tex].
- Simplifying the ratio, [tex]\(\frac{2 \text{ moles } C_3H_6}{9 \text{ moles } O_2}\)[/tex].
- Therefore, [tex]\(\frac{2 \text{ moles } C_3H_6}{6 \text{ moles } O_2}\)[/tex] does not match this ratio.
4. Option 4: [tex]\(\frac{3 \text{ mol } H_2O}{2 \text{ mol } CO_2}\)[/tex]
- According to the balanced equation, 6 moles of [tex]\(CO_2\)[/tex] are produced alongside 6 moles of [tex]\(H_2O\)[/tex].
- Simplifying the ratio, [tex]\(\frac{6 \text{ moles } H_2O}{6 \text{ moles } CO_2} = \frac{1 \text{ mol } H_2O}{1 \text{ mol } CO_2}\)[/tex].
- Therefore, [tex]\(\frac{3 \text{ moles } H_2O}{2 \text{ moles } CO_2}\)[/tex] does not match this ratio.
Among the given options, the valid mole ratio from the balanced equation is:
[tex]\[ \boxed{\frac{6 \text{ mol } H_2O}{9 \text{ mol } O_2}} \][/tex]
[tex]\[ 2 C_3H_6 + 9 O_2 \rightarrow 6 CO_2 + 6 H_2O \][/tex]
We'll compare each of the provided ratios with the stoichiometric coefficients in the balanced equation. Here's the step-by-step analysis:
1. Option 1: [tex]\(\frac{1 \text{ mol } C_3H_6}{2 \text{ mol } CO_2}\)[/tex]
- According to the balanced equation, 2 moles of [tex]\(C_3H_6\)[/tex] produce 6 moles of [tex]\(CO_2\)[/tex].
- Simplifying the ratio, [tex]\(\frac{2 \text{ moles } C_3H_6}{6 \text{ moles } CO_2} = \frac{1 \text{ mol } C_3H_6}{3 \text{ moles } CO_2}\)[/tex].
- Therefore, [tex]\(\frac{1 \text{ mol } C_3H_6}{2 \text{ moles } CO_2}\)[/tex] does not match this ratio.
2. Option 2: [tex]\(\frac{6 \text{ mol } H_2O}{9 \text{ mol } O_2}\)[/tex]
- According to the balanced equation, 9 moles of [tex]\(O_2\)[/tex] react to produce 6 moles of [tex]\(H_2O\)[/tex].
- The ratio [tex]\(\frac{6 \text{ mol } H_2O}{9 \text{ mol } O_2}\)[/tex] correctly reflects the stoichiometry in the given balanced equation.
- This ratio is valid.
3. Option 3: [tex]\(\frac{2 \text{ mol } C_3H_6}{6 \text{ mol } O_2}\)[/tex]
- According to the balanced equation, 2 moles of [tex]\(C_3H_6\)[/tex] react with 9 moles of [tex]\(O_2\)[/tex].
- Simplifying the ratio, [tex]\(\frac{2 \text{ moles } C_3H_6}{9 \text{ moles } O_2}\)[/tex].
- Therefore, [tex]\(\frac{2 \text{ moles } C_3H_6}{6 \text{ moles } O_2}\)[/tex] does not match this ratio.
4. Option 4: [tex]\(\frac{3 \text{ mol } H_2O}{2 \text{ mol } CO_2}\)[/tex]
- According to the balanced equation, 6 moles of [tex]\(CO_2\)[/tex] are produced alongside 6 moles of [tex]\(H_2O\)[/tex].
- Simplifying the ratio, [tex]\(\frac{6 \text{ moles } H_2O}{6 \text{ moles } CO_2} = \frac{1 \text{ mol } H_2O}{1 \text{ mol } CO_2}\)[/tex].
- Therefore, [tex]\(\frac{3 \text{ moles } H_2O}{2 \text{ moles } CO_2}\)[/tex] does not match this ratio.
Among the given options, the valid mole ratio from the balanced equation is:
[tex]\[ \boxed{\frac{6 \text{ mol } H_2O}{9 \text{ mol } O_2}} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.