Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Find the value of the breadth of the rectangle.
(5x+15) cm
(4x-6) cm
50 cm

Sagot :

Answer:

10/9 cm

Step-by-step explanation:

To find the breadth of the rectangle, we use the information given about its dimensions:

Let the length of the rectangle be \( 5x + 15 \) cm.

Let the breadth of the rectangle be \( 4x - 6 \) cm.

We are given that the perimeter of the rectangle is 50 cm.

The formula for the perimeter \( P \) of a rectangle is:

\[ P = 2 \times (\text{length} + \text{breadth}) \]

Substituting the given values:

\[ 50 = 2 \times ((5x + 15) + (4x - 6)) \]

Now, simplify the expression inside the parentheses:

\[ 50 = 2 \times (5x + 15 + 4x - 6) \]

\[ 50 = 2 \times (9x + 9) \]

Next, divide both sides by 2 to solve for \( 9x + 9 \):

\[ 25 = 9x + 9 \]

Subtract 9 from both sides:

\[ 25 - 9 = 9x \]

\[ 16 = 9x \]

Now, divide both sides by 9 to solve for \( x \):

\[ x = \frac{16}{9} \]

Now that we have \( x \), substitute it back into the expression for the breadth \( 4x - 6 \):

\[ \text{Breadth} = 4x - 6 \]

\[ \text{Breadth} = 4 \left(\frac{16}{9}\right) - 6 \]

\[ \text{Breadth} = \frac{64}{9} - \frac{54}{9} \]

\[ \text{Breadth} = \frac{10}{9} \]

Therefore, the breadth of the rectangle is 10/9 cm.