Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the limit [tex]\(\lim_ {x \rightarrow \infty} \frac{3 x^2-5}{2 x^3+4 x+3}\)[/tex], let's analyze the given function step-by-step:
1. Understanding the degrees of the terms:
- The numerator [tex]\(3x^2 - 5\)[/tex] is a polynomial of degree 2.
- The denominator [tex]\(2x^3 + 4x + 3\)[/tex] is a polynomial of degree 3.
2. Behavior at infinity:
- When [tex]\(x\)[/tex] approaches infinity ([tex]\(x \rightarrow \infty\)[/tex]), higher-degree terms in both the numerator and the denominator will dominate the behavior of the function.
3. Simplifying the function:
To simplify the behavior as [tex]\(x \rightarrow \infty\)[/tex], we can divide both the numerator and the denominator by the highest power of [tex]\(x\)[/tex] present in the denominator, which is [tex]\(x^3\)[/tex]:
[tex]\[ \frac{3 x^2 - 5}{2 x^3 + 4 x + 3} = \frac{\frac{3 x^2 - 5}{x^3}}{\frac{2 x^3 + 4 x + 3}{x^3}} \][/tex]
Simplifying each term inside the fractions:
[tex]\[ = \frac{\frac{3 x^2}{x^3} - \frac{5}{x^3}}{\frac{2 x^3}{x^3} + \frac{4 x}{x^3} + \frac{3}{x^3}} \][/tex]
Which reduces to:
[tex]\[ = \frac{\frac{3}{x} - \frac{5}{x^3}}{2 + \frac{4}{x^2} + \frac{3}{x^3}} \][/tex]
4. Taking the limit:
As [tex]\(x\)[/tex] approaches infinity, the terms [tex]\(\frac{3}{x}\)[/tex], [tex]\(\frac{5}{x^3}\)[/tex], [tex]\(\frac{4}{x^2}\)[/tex], and [tex]\(\frac{3}{x^3}\)[/tex] all approach 0 because the denominator in each of these fractions grows without bounds.
Therefore, as [tex]\(x \rightarrow \infty\)[/tex], the original expression simplifies to:
[tex]\[ \frac{0 - 0}{2 + 0 + 0} = \frac{0}{2} = 0 \][/tex]
So, the limit is:
[tex]\[ \lim_ {x \rightarrow \infty} \frac{3 x^2 - 5}{2 x^3 + 4 x + 3} = 0 \][/tex]
1. Understanding the degrees of the terms:
- The numerator [tex]\(3x^2 - 5\)[/tex] is a polynomial of degree 2.
- The denominator [tex]\(2x^3 + 4x + 3\)[/tex] is a polynomial of degree 3.
2. Behavior at infinity:
- When [tex]\(x\)[/tex] approaches infinity ([tex]\(x \rightarrow \infty\)[/tex]), higher-degree terms in both the numerator and the denominator will dominate the behavior of the function.
3. Simplifying the function:
To simplify the behavior as [tex]\(x \rightarrow \infty\)[/tex], we can divide both the numerator and the denominator by the highest power of [tex]\(x\)[/tex] present in the denominator, which is [tex]\(x^3\)[/tex]:
[tex]\[ \frac{3 x^2 - 5}{2 x^3 + 4 x + 3} = \frac{\frac{3 x^2 - 5}{x^3}}{\frac{2 x^3 + 4 x + 3}{x^3}} \][/tex]
Simplifying each term inside the fractions:
[tex]\[ = \frac{\frac{3 x^2}{x^3} - \frac{5}{x^3}}{\frac{2 x^3}{x^3} + \frac{4 x}{x^3} + \frac{3}{x^3}} \][/tex]
Which reduces to:
[tex]\[ = \frac{\frac{3}{x} - \frac{5}{x^3}}{2 + \frac{4}{x^2} + \frac{3}{x^3}} \][/tex]
4. Taking the limit:
As [tex]\(x\)[/tex] approaches infinity, the terms [tex]\(\frac{3}{x}\)[/tex], [tex]\(\frac{5}{x^3}\)[/tex], [tex]\(\frac{4}{x^2}\)[/tex], and [tex]\(\frac{3}{x^3}\)[/tex] all approach 0 because the denominator in each of these fractions grows without bounds.
Therefore, as [tex]\(x \rightarrow \infty\)[/tex], the original expression simplifies to:
[tex]\[ \frac{0 - 0}{2 + 0 + 0} = \frac{0}{2} = 0 \][/tex]
So, the limit is:
[tex]\[ \lim_ {x \rightarrow \infty} \frac{3 x^2 - 5}{2 x^3 + 4 x + 3} = 0 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.