At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
So, the probability that the total length of the 9 trials is at least 225 days is approximately 0.0436, or 4.36%
Step-by-step explanation:
To solve this problem, we need to find the probability that the total length of 9 trials is at least 225 days, given that each trial has a mean duration of 21 days and a standard deviation of 7 days.
First, let's denote:
- \( X_i \) as the duration of the \( i \)-th trial.
- The total duration of 9 trials as \( S = X_1 + X_2 + \cdots + X_9 \).
Since each \( X_i \) follows a normal distribution with mean \( \mu = 21 \) days and standard deviation \( \sigma = 7 \) days, the sum \( S \) of these 9 trials will follow a normal distribution with:
- Mean of \( 9 \times 21 = 189 \) days (since \( \mu_S = n \mu = 9 \times 21 \)).
- Standard deviation of \( \sigma_S = \sqrt{n} \times \sigma = \sqrt{9} \times 7 = 21 \) days.
Now, we need to find \( P(S \geq 225) \).
Calculate the z-score for \( S = 225 \):
\[ z = \frac{225 - 189}{21} = \frac{36}{21} \approx 1.7143 \]
Using the standard normal distribution table or a calculator, find the probability corresponding to \( z = 1.7143 \):
\[ P(S \geq 225) = 1 - P(Z < 1.7143) \]
From the standard normal distribution table:
\[ P(Z < 1.7143) \approx 0.9564 \]
Therefore,
\[ P(S \geq 225) = 1 - 0.9564 = 0.0436 \]
So, the probability that the total length of the 9 trials is at least 225 days is approximately 0.0436, or 4.36%
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.