Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the problem, we need to find the point on the [tex]\( y \)[/tex]-axis that is perpendicular to the given line passing through the point [tex]\((-2, 0)\)[/tex].
1. Identify the coordinates provided:
- The line passes through [tex]\((-3.6, 0)\)[/tex] and [tex]\((-2, 0)\)[/tex].
- We need to find the point on the [tex]\( y \)[/tex]-axis that is perpendicular to this line.
2. Understand the properties of the given points:
- Both points [tex]\((-3.6, 0)\)[/tex] and [tex]\((-2, 0)\)[/tex] lie on the [tex]\( x \)[/tex]-axis.
- A point on the [tex]\( y \)[/tex]-axis has coordinates in the form [tex]\((0, y)\)[/tex].
3. Determine the point on the [tex]\( y \)[/tex]-axis:
- Since the line is along the [tex]\( x \)[/tex]-axis, to find a point perpendicular on the [tex]\( y \)[/tex]-axis:
- The [tex]\( x \)[/tex]-coordinate of the point on the [tex]\( y \)[/tex]-axis will be [tex]\( 0 \)[/tex].
4. Identify the specific y-coordinate:
- The [tex]\( y \)[/tex]-coordinate of the point on the [tex]\( y \)[/tex]-axis will be the same as the [tex]\( x \)[/tex]-coordinate of the point [tex]\((-3.6, 0)\)[/tex] because we reflect the point along the line perpendicular to the [tex]\( x \)[/tex]-axis.
So, the coordinates of the point on the [tex]\( y \)[/tex]-axis perpendicular to the line passing through [tex]\((-2, 0)\)[/tex] will be [tex]\((0, -3.6)\)[/tex].
Hence, the required point on the [tex]\( y \)[/tex]-axis is [tex]\((0, -3.6)\)[/tex].
1. Identify the coordinates provided:
- The line passes through [tex]\((-3.6, 0)\)[/tex] and [tex]\((-2, 0)\)[/tex].
- We need to find the point on the [tex]\( y \)[/tex]-axis that is perpendicular to this line.
2. Understand the properties of the given points:
- Both points [tex]\((-3.6, 0)\)[/tex] and [tex]\((-2, 0)\)[/tex] lie on the [tex]\( x \)[/tex]-axis.
- A point on the [tex]\( y \)[/tex]-axis has coordinates in the form [tex]\((0, y)\)[/tex].
3. Determine the point on the [tex]\( y \)[/tex]-axis:
- Since the line is along the [tex]\( x \)[/tex]-axis, to find a point perpendicular on the [tex]\( y \)[/tex]-axis:
- The [tex]\( x \)[/tex]-coordinate of the point on the [tex]\( y \)[/tex]-axis will be [tex]\( 0 \)[/tex].
4. Identify the specific y-coordinate:
- The [tex]\( y \)[/tex]-coordinate of the point on the [tex]\( y \)[/tex]-axis will be the same as the [tex]\( x \)[/tex]-coordinate of the point [tex]\((-3.6, 0)\)[/tex] because we reflect the point along the line perpendicular to the [tex]\( x \)[/tex]-axis.
So, the coordinates of the point on the [tex]\( y \)[/tex]-axis perpendicular to the line passing through [tex]\((-2, 0)\)[/tex] will be [tex]\((0, -3.6)\)[/tex].
Hence, the required point on the [tex]\( y \)[/tex]-axis is [tex]\((0, -3.6)\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.