Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Solve for [tex][tex]$y$[/tex][/tex].

[tex]\[ y^2 - 9y + 14 = 0 \][/tex]

If there is more than one solution, separate them with commas.
If there is no solution, click on "No solution."

[tex]\[ y = \][/tex]


Sagot :

To solve the quadratic equation [tex]\( y^2 - 9y + 14 = 0 \)[/tex], we can use the quadratic formula, which is given by:

[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

In this quadratic equation, [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are the coefficients of [tex]\(y^2\)[/tex], [tex]\(y\)[/tex], and the constant term, respectively. Here, [tex]\(a = 1\)[/tex], [tex]\(b = -9\)[/tex], and [tex]\(c = 14\)[/tex].

First, we need to calculate the discriminant, which is [tex]\( b^2 - 4ac \)[/tex].

1. Calculate the discriminant:
[tex]\[ \Delta = (-9)^2 - 4 \cdot 1 \cdot 14 \][/tex]
[tex]\[ \Delta = 81 - 56 \][/tex]
[tex]\[ \Delta = 25 \][/tex]

Since the discriminant is positive, we have two real solutions. Now, we use the quadratic formula to find these solutions.

2. Calculate the solutions:
[tex]\[ y_1 = \frac{-(-9) + \sqrt{25}}{2 \cdot 1} \][/tex]
[tex]\[ y_1 = \frac{9 + 5}{2} \][/tex]
[tex]\[ y_1 = \frac{14}{2} \][/tex]
[tex]\[ y_1 = 7 \][/tex]

[tex]\[ y_2 = \frac{-(-9) - \sqrt{25}}{2 \cdot 1} \][/tex]
[tex]\[ y_2 = \frac{9 - 5}{2} \][/tex]
[tex]\[ y_2 = \frac{4}{2} \][/tex]
[tex]\[ y_2 = 2 \][/tex]

Thus, the solutions to the equation [tex]\( y^2 - 9y + 14 = 0 \)[/tex] are:

[tex]\[ y = 7, 2 \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.