Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which ordered pairs could be points on a line that is perpendicular to a given line with a slope of [tex]\(-\frac{4}{5}\)[/tex], we need to understand the relationship between the slopes of perpendicular lines. Specifically, the slope of a line that is perpendicular to another line is the negative reciprocal of the slope of the original line.
1. Identify the slope of the perpendicular line:
The slope of the given line is [tex]\(-\frac{4}{5}\)[/tex]. The negative reciprocal of [tex]\(-\frac{4}{5}\)[/tex] is obtained by flipping the fraction and changing the sign:
[tex]\[ \text{Perpendicular slope} = -\left(-\frac{5}{4}\right) = \frac{5}{4} \][/tex]
2. Check each pair of points to see if they yield this slope:
- For the points [tex]\((-2, 0)\)[/tex] and [tex]\((2, 5)\)[/tex]:
[tex]\[ \text{Slope} = \frac{5 - 0}{2 - (-2)} = \frac{5}{4} \][/tex]
This pair has the correct slope of [tex]\(\frac{5}{4}\)[/tex].
- For the points [tex]\((-4, 5)\)[/tex] and [tex]\((4, -5)\)[/tex]:
[tex]\[ \text{Slope} = \frac{-5 - 5}{4 - (-4)} = \frac{-10}{8} = -\frac{5}{4} \][/tex]
This pair does not have the slope we're looking for.
- For the points [tex]\((-3, 4)\)[/tex] and [tex]\((2, 0)\)[/tex]:
[tex]\[ \text{Slope} = \frac{0 - 4}{2 - (-3)} = \frac{-4}{5} \][/tex]
This pair does not have the slope we're looking for.
- For the points [tex]\((1, -1)\)[/tex] and [tex]\((6, -5)\)[/tex]:
[tex]\[ \text{Slope} = \frac{-5 - (-1)}{6 - 1} = \frac{-4}{5} \][/tex]
This pair does not have the slope we're looking for.
- For the points [tex]\((2, -1)\)[/tex] and [tex]\((10, 9)\)[/tex]:
[tex]\[ \text{Slope} = \frac{9 - (-1)}{10 - 2} = \frac{10}{8} = \frac{5}{4} \][/tex]
This pair has the correct slope of [tex]\(\frac{5}{4}\)[/tex].
So, the ordered pairs that could be points on a line perpendicular to the line with a slope of [tex]\(-\frac{4}{5}\)[/tex] are:
- [tex]\((-2, 0)\)[/tex] and [tex]\((2, 5)\)[/tex]
- [tex]\((2, -1)\)[/tex] and [tex]\((10, 9)\)[/tex]
1. Identify the slope of the perpendicular line:
The slope of the given line is [tex]\(-\frac{4}{5}\)[/tex]. The negative reciprocal of [tex]\(-\frac{4}{5}\)[/tex] is obtained by flipping the fraction and changing the sign:
[tex]\[ \text{Perpendicular slope} = -\left(-\frac{5}{4}\right) = \frac{5}{4} \][/tex]
2. Check each pair of points to see if they yield this slope:
- For the points [tex]\((-2, 0)\)[/tex] and [tex]\((2, 5)\)[/tex]:
[tex]\[ \text{Slope} = \frac{5 - 0}{2 - (-2)} = \frac{5}{4} \][/tex]
This pair has the correct slope of [tex]\(\frac{5}{4}\)[/tex].
- For the points [tex]\((-4, 5)\)[/tex] and [tex]\((4, -5)\)[/tex]:
[tex]\[ \text{Slope} = \frac{-5 - 5}{4 - (-4)} = \frac{-10}{8} = -\frac{5}{4} \][/tex]
This pair does not have the slope we're looking for.
- For the points [tex]\((-3, 4)\)[/tex] and [tex]\((2, 0)\)[/tex]:
[tex]\[ \text{Slope} = \frac{0 - 4}{2 - (-3)} = \frac{-4}{5} \][/tex]
This pair does not have the slope we're looking for.
- For the points [tex]\((1, -1)\)[/tex] and [tex]\((6, -5)\)[/tex]:
[tex]\[ \text{Slope} = \frac{-5 - (-1)}{6 - 1} = \frac{-4}{5} \][/tex]
This pair does not have the slope we're looking for.
- For the points [tex]\((2, -1)\)[/tex] and [tex]\((10, 9)\)[/tex]:
[tex]\[ \text{Slope} = \frac{9 - (-1)}{10 - 2} = \frac{10}{8} = \frac{5}{4} \][/tex]
This pair has the correct slope of [tex]\(\frac{5}{4}\)[/tex].
So, the ordered pairs that could be points on a line perpendicular to the line with a slope of [tex]\(-\frac{4}{5}\)[/tex] are:
- [tex]\((-2, 0)\)[/tex] and [tex]\((2, 5)\)[/tex]
- [tex]\((2, -1)\)[/tex] and [tex]\((10, 9)\)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.