Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the exact values of [tex]\( s \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] that satisfy the condition [tex]\(\cos^2(s) = \frac{3}{4}\)[/tex], follow these steps:
1. Solve for [tex]\(\cos(s)\)[/tex]:
Given [tex]\(\cos^2(s) = \frac{3}{4}\)[/tex], we take the square root of both sides to find:
[tex]\[ \cos(s) = \pm \sqrt{\frac{3}{4}} \][/tex]
Simplifying the square root, we get:
[tex]\[ \cos(s) = \pm \frac{\sqrt{3}}{2} \][/tex]
2. Identify the angles whose cosine value equals [tex]\(\frac{\sqrt{3}}{2}\)[/tex] or [tex]\(-\frac{\sqrt{3}}{2}\)[/tex]:
- For [tex]\(\cos(s) = \frac{\sqrt{3}}{2}\)[/tex], [tex]\( s \)[/tex] could be:
[tex]\[ s = \frac{\pi}{6} \quad \text{or} \quad s = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6} \][/tex]
- For [tex]\(\cos(s) = -\frac{\sqrt{3}}{2}\)[/tex], [tex]\( s \)[/tex] could be:
[tex]\[ s = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \quad \text{or} \quad s = \pi + \frac{\pi}{6} = \frac{7\pi}{6} \][/tex]
3. List all the solutions within the interval [tex]\([0, 2\pi)\)[/tex]:
We have four values of [tex]\( s \)[/tex] that satisfy the condition:
[tex]\[ s = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \][/tex]
Thus, the exact values of [tex]\( s \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] that satisfy [tex]\(\cos^2(s) = \frac{3}{4}\)[/tex] are:
[tex]\[ \boxed{\frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}} \][/tex]
1. Solve for [tex]\(\cos(s)\)[/tex]:
Given [tex]\(\cos^2(s) = \frac{3}{4}\)[/tex], we take the square root of both sides to find:
[tex]\[ \cos(s) = \pm \sqrt{\frac{3}{4}} \][/tex]
Simplifying the square root, we get:
[tex]\[ \cos(s) = \pm \frac{\sqrt{3}}{2} \][/tex]
2. Identify the angles whose cosine value equals [tex]\(\frac{\sqrt{3}}{2}\)[/tex] or [tex]\(-\frac{\sqrt{3}}{2}\)[/tex]:
- For [tex]\(\cos(s) = \frac{\sqrt{3}}{2}\)[/tex], [tex]\( s \)[/tex] could be:
[tex]\[ s = \frac{\pi}{6} \quad \text{or} \quad s = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6} \][/tex]
- For [tex]\(\cos(s) = -\frac{\sqrt{3}}{2}\)[/tex], [tex]\( s \)[/tex] could be:
[tex]\[ s = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \quad \text{or} \quad s = \pi + \frac{\pi}{6} = \frac{7\pi}{6} \][/tex]
3. List all the solutions within the interval [tex]\([0, 2\pi)\)[/tex]:
We have four values of [tex]\( s \)[/tex] that satisfy the condition:
[tex]\[ s = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \][/tex]
Thus, the exact values of [tex]\( s \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] that satisfy [tex]\(\cos^2(s) = \frac{3}{4}\)[/tex] are:
[tex]\[ \boxed{\frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.