Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Find the exact values of [tex]\( s \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] that satisfy the given condition [tex]\(\cos^2 s = \frac{3}{4}\)[/tex].

[tex]\[ s = \square \][/tex]

(Use a comma to separate answers as needed. Simplify your answers. Type exact answers using [tex]\(\pi\)[/tex] for any numbers in the expression.)


Sagot :

To find the exact values of [tex]\( s \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] that satisfy the condition [tex]\(\cos^2(s) = \frac{3}{4}\)[/tex], follow these steps:

1. Solve for [tex]\(\cos(s)\)[/tex]:
Given [tex]\(\cos^2(s) = \frac{3}{4}\)[/tex], we take the square root of both sides to find:
[tex]\[ \cos(s) = \pm \sqrt{\frac{3}{4}} \][/tex]
Simplifying the square root, we get:
[tex]\[ \cos(s) = \pm \frac{\sqrt{3}}{2} \][/tex]

2. Identify the angles whose cosine value equals [tex]\(\frac{\sqrt{3}}{2}\)[/tex] or [tex]\(-\frac{\sqrt{3}}{2}\)[/tex]:
- For [tex]\(\cos(s) = \frac{\sqrt{3}}{2}\)[/tex], [tex]\( s \)[/tex] could be:
[tex]\[ s = \frac{\pi}{6} \quad \text{or} \quad s = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6} \][/tex]

- For [tex]\(\cos(s) = -\frac{\sqrt{3}}{2}\)[/tex], [tex]\( s \)[/tex] could be:
[tex]\[ s = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \quad \text{or} \quad s = \pi + \frac{\pi}{6} = \frac{7\pi}{6} \][/tex]

3. List all the solutions within the interval [tex]\([0, 2\pi)\)[/tex]:
We have four values of [tex]\( s \)[/tex] that satisfy the condition:
[tex]\[ s = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \][/tex]

Thus, the exact values of [tex]\( s \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] that satisfy [tex]\(\cos^2(s) = \frac{3}{4}\)[/tex] are:
[tex]\[ \boxed{\frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.