Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Find the exact values of [tex]\( s \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] that satisfy the given condition [tex]\(\cos^2 s = \frac{3}{4}\)[/tex].

[tex]\[ s = \square \][/tex]

(Use a comma to separate answers as needed. Simplify your answers. Type exact answers using [tex]\(\pi\)[/tex] for any numbers in the expression.)


Sagot :

To find the exact values of [tex]\( s \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] that satisfy the condition [tex]\(\cos^2(s) = \frac{3}{4}\)[/tex], follow these steps:

1. Solve for [tex]\(\cos(s)\)[/tex]:
Given [tex]\(\cos^2(s) = \frac{3}{4}\)[/tex], we take the square root of both sides to find:
[tex]\[ \cos(s) = \pm \sqrt{\frac{3}{4}} \][/tex]
Simplifying the square root, we get:
[tex]\[ \cos(s) = \pm \frac{\sqrt{3}}{2} \][/tex]

2. Identify the angles whose cosine value equals [tex]\(\frac{\sqrt{3}}{2}\)[/tex] or [tex]\(-\frac{\sqrt{3}}{2}\)[/tex]:
- For [tex]\(\cos(s) = \frac{\sqrt{3}}{2}\)[/tex], [tex]\( s \)[/tex] could be:
[tex]\[ s = \frac{\pi}{6} \quad \text{or} \quad s = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6} \][/tex]

- For [tex]\(\cos(s) = -\frac{\sqrt{3}}{2}\)[/tex], [tex]\( s \)[/tex] could be:
[tex]\[ s = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \quad \text{or} \quad s = \pi + \frac{\pi}{6} = \frac{7\pi}{6} \][/tex]

3. List all the solutions within the interval [tex]\([0, 2\pi)\)[/tex]:
We have four values of [tex]\( s \)[/tex] that satisfy the condition:
[tex]\[ s = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6} \][/tex]

Thus, the exact values of [tex]\( s \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] that satisfy [tex]\(\cos^2(s) = \frac{3}{4}\)[/tex] are:
[tex]\[ \boxed{\frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.