Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To address the conjecture "For every integer [tex]\( n \)[/tex], [tex]\( n^3 \)[/tex] is positive," we will explore the values of [tex]\( n \)[/tex] given in the question:
1. [tex]\( n = 1 \)[/tex]
2. [tex]\( n = -3 \)[/tex]
3. [tex]\( n = 2 \)[/tex]
4. [tex]\( n = 5 \)[/tex]
We will calculate [tex]\( n^3 \)[/tex] for each value of [tex]\( n \)[/tex]:
1. For [tex]\( n = 1 \)[/tex]:
[tex]\[ 1^3 = 1 \][/tex]
The result is positive.
2. For [tex]\( n = -3 \)[/tex]:
[tex]\[ (-3)^3 = -27 \][/tex]
The result is negative.
3. For [tex]\( n = 2 \)[/tex]:
[tex]\[ 2^3 = 8 \][/tex]
The result is positive.
4. For [tex]\( n = 5 \)[/tex]:
[tex]\[ 5^3 = 125 \][/tex]
The result is positive.
From these calculations, we can see that [tex]\( n = -3 \)[/tex] results in [tex]\( (-3)^3 = -27 \)[/tex], which is a negative number. This serves as a counterexample that disproves the conjecture.
Therefore, we have demonstrated that the conjecture "For every integer [tex]\( n \)[/tex], [tex]\( n^3 \)[/tex] is positive" is false. The specific value of [tex]\( n \)[/tex] that serves as the counterexample is [tex]\( n = -3 \)[/tex].
So, the value of [tex]\( n \)[/tex] that makes the conjecture false is:
[tex]\[ n = -3 \][/tex]
1. [tex]\( n = 1 \)[/tex]
2. [tex]\( n = -3 \)[/tex]
3. [tex]\( n = 2 \)[/tex]
4. [tex]\( n = 5 \)[/tex]
We will calculate [tex]\( n^3 \)[/tex] for each value of [tex]\( n \)[/tex]:
1. For [tex]\( n = 1 \)[/tex]:
[tex]\[ 1^3 = 1 \][/tex]
The result is positive.
2. For [tex]\( n = -3 \)[/tex]:
[tex]\[ (-3)^3 = -27 \][/tex]
The result is negative.
3. For [tex]\( n = 2 \)[/tex]:
[tex]\[ 2^3 = 8 \][/tex]
The result is positive.
4. For [tex]\( n = 5 \)[/tex]:
[tex]\[ 5^3 = 125 \][/tex]
The result is positive.
From these calculations, we can see that [tex]\( n = -3 \)[/tex] results in [tex]\( (-3)^3 = -27 \)[/tex], which is a negative number. This serves as a counterexample that disproves the conjecture.
Therefore, we have demonstrated that the conjecture "For every integer [tex]\( n \)[/tex], [tex]\( n^3 \)[/tex] is positive" is false. The specific value of [tex]\( n \)[/tex] that serves as the counterexample is [tex]\( n = -3 \)[/tex].
So, the value of [tex]\( n \)[/tex] that makes the conjecture false is:
[tex]\[ n = -3 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.