Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Rewrite in simplest terms:
[tex]\[ -4(-8w - 4x) - 7x - 10(-10x + 8w) \][/tex]

Answer:
[tex]\[ \square \][/tex]


Sagot :

Sure, let's simplify the given expression step by step:

The expression is:
[tex]\[ -4(-8w - 4x) - 7x - 10(-10x + 8w) \][/tex]

First, let's distribute the constants inside the parentheses:

[tex]\[ -4(-8w) - 4(-4x) - 7x - 10(-10x) - 10(8w) \][/tex]

This results in:

[tex]\[ 32w + 16x - 7x + 100x - 80w \][/tex]

Now, let's combine like terms. We'll group the terms with [tex]\(w\)[/tex] together and the terms with [tex]\(x\)[/tex] together:

For [tex]\(w\)[/tex]:
[tex]\[ 32w - 80w = -48w \][/tex]

For [tex]\(x\)[/tex]:
[tex]\[ 16x - 7x + 100x = 109x \][/tex]

Thus, the simplified expression is:

[tex]\[ -48w + 109x \][/tex]

So, the simplest form of the expression [tex]\( -4(-8 w-4 x)-7 x-10(-10 x+8 w) \)[/tex] is:

[tex]\[ \boxed{-48w + 109x} \][/tex]