Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To factor the polynomial [tex]\( f(x) = 3x^3 + 17x^2 - 54x + 16 \)[/tex] completely, given that [tex]\( k = 2 \)[/tex] is a zero of [tex]\( f(x) \)[/tex], we can follow these steps:
1. Verify that [tex]\( x = 2 \)[/tex] is a root: Given [tex]\( k = 2 \)[/tex] is a zero of [tex]\( f(x) \)[/tex], [tex]\( f(2) = 0 \)[/tex]. Therefore, [tex]\( x - 2 \)[/tex] is a factor of [tex]\( f(x) \)[/tex].
2. Divide [tex]\( f(x) \)[/tex] by [tex]\( x - 2 \)[/tex]: To factor [tex]\( f(x) \)[/tex] further, we divide [tex]\( f(x) \)[/tex] by [tex]\( x - 2 \)[/tex] using polynomial division or synthetic division. This will give us a quotient and possibly a remainder. Since [tex]\( x = 2 \)[/tex] is a root, the remainder will be zero.
Performing synthetic division or polynomial division:
- The quotient obtained is [tex]\( 3x^2 + 23x - 8 \)[/tex].
3. Factor the quotient: Next, we need to factor the quotient [tex]\( 3x^2 + 23x - 8 \)[/tex]. To do this, we can look for factor pairs of the product of the leading coefficient (3) and the constant term (-8):
- Factor pair that sums to the middle coefficient (23) is found, which splits the middle term into two factors.
- Rewriting and factoring the quadratic:
[tex]\[ 3x^2 + 23x - 8 = (x + 8)(3x - 1) \][/tex]
4. Combine the factors: Now, we combine [tex]\( x - 2 \)[/tex] with the factors obtained from the quotient:
- The complete factorization of [tex]\( f(x) \)[/tex] is:
[tex]\[ f(x) = (x - 2)(x + 8)(3x - 1) \][/tex]
Therefore, the polynomial [tex]\( f(x) = 3x^3 + 17x^2 - 54x + 16 \)[/tex] can be factored completely as:
[tex]\[ f(x) = (x - 2)(x + 8)(3x - 1) \][/tex]
1. Verify that [tex]\( x = 2 \)[/tex] is a root: Given [tex]\( k = 2 \)[/tex] is a zero of [tex]\( f(x) \)[/tex], [tex]\( f(2) = 0 \)[/tex]. Therefore, [tex]\( x - 2 \)[/tex] is a factor of [tex]\( f(x) \)[/tex].
2. Divide [tex]\( f(x) \)[/tex] by [tex]\( x - 2 \)[/tex]: To factor [tex]\( f(x) \)[/tex] further, we divide [tex]\( f(x) \)[/tex] by [tex]\( x - 2 \)[/tex] using polynomial division or synthetic division. This will give us a quotient and possibly a remainder. Since [tex]\( x = 2 \)[/tex] is a root, the remainder will be zero.
Performing synthetic division or polynomial division:
- The quotient obtained is [tex]\( 3x^2 + 23x - 8 \)[/tex].
3. Factor the quotient: Next, we need to factor the quotient [tex]\( 3x^2 + 23x - 8 \)[/tex]. To do this, we can look for factor pairs of the product of the leading coefficient (3) and the constant term (-8):
- Factor pair that sums to the middle coefficient (23) is found, which splits the middle term into two factors.
- Rewriting and factoring the quadratic:
[tex]\[ 3x^2 + 23x - 8 = (x + 8)(3x - 1) \][/tex]
4. Combine the factors: Now, we combine [tex]\( x - 2 \)[/tex] with the factors obtained from the quotient:
- The complete factorization of [tex]\( f(x) \)[/tex] is:
[tex]\[ f(x) = (x - 2)(x + 8)(3x - 1) \][/tex]
Therefore, the polynomial [tex]\( f(x) = 3x^3 + 17x^2 - 54x + 16 \)[/tex] can be factored completely as:
[tex]\[ f(x) = (x - 2)(x + 8)(3x - 1) \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.