Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the position of point [tex]\( P \)[/tex] that partitions the line segment from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] in a 3:4 ratio, let’s first understand what this ratio signifies.
### Step-by-Step Solution:
1. Understanding the Ratio:
- The ratio 3:4 means the entire length of the segment [tex]\( AB \)[/tex] is divided into two parts such that the part closer to [tex]\( A \)[/tex] is 3 units long and the part closer to [tex]\( B \)[/tex] is 4 units long.
2. Finding the Total Length:
- Total parts = 3 parts + 4 parts = 7 parts.
- Hence, the total length of the segment [tex]\( AB \)[/tex] can be considered as 7 equal parts.
3. Distance from [tex]\( A \)[/tex] to [tex]\( P \)[/tex]:
- If [tex]\( P \)[/tex] partitions the segment in the 3:4 ratio, the distance from [tex]\( A \)[/tex] to [tex]\( P \)[/tex] is given by:
[tex]\[ \text{Distance from } A \text{ to } P = \frac{3}{7} \times \text{Total length of } AB \][/tex]
4. Distance from [tex]\( B \)[/tex] to [tex]\( P \)[/tex]:
- Conversely, the distance from [tex]\( B \)[/tex] to [tex]\( P \)[/tex] is given by:
[tex]\[ \text{Distance from } B \text{ to } P = \frac{4}{7} \times \text{Total length of } AB \][/tex]
5. Comparing the Distances:
- [tex]\(\frac{3}{7}\)[/tex] of the distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] is approximately 0.4286 (rounded to four decimal places).
- [tex]\(\frac{4}{7}\)[/tex] of the distance from [tex]\( B \)[/tex] to [tex]\( A \)[/tex] is approximately 0.5714 (rounded to four decimal places).
6. Conclusion:
- Since [tex]\( \frac{3}{7} \)[/tex] (0.4286) is less than [tex]\( \frac{4}{7} \)[/tex] (0.5714), point [tex]\( P \)[/tex] is closer to [tex]\( A \)[/tex].
Therefore, [tex]\( P \)[/tex] is closer to [tex]\( A \)[/tex] because it will be [tex]\(\frac{3}{7}\)[/tex] the distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex]. This confirms that the correct answer is:
P will be closer to [tex]\( A \)[/tex] because it will be [tex]\(\frac{3}{7}\)[/tex] the distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex].
### Step-by-Step Solution:
1. Understanding the Ratio:
- The ratio 3:4 means the entire length of the segment [tex]\( AB \)[/tex] is divided into two parts such that the part closer to [tex]\( A \)[/tex] is 3 units long and the part closer to [tex]\( B \)[/tex] is 4 units long.
2. Finding the Total Length:
- Total parts = 3 parts + 4 parts = 7 parts.
- Hence, the total length of the segment [tex]\( AB \)[/tex] can be considered as 7 equal parts.
3. Distance from [tex]\( A \)[/tex] to [tex]\( P \)[/tex]:
- If [tex]\( P \)[/tex] partitions the segment in the 3:4 ratio, the distance from [tex]\( A \)[/tex] to [tex]\( P \)[/tex] is given by:
[tex]\[ \text{Distance from } A \text{ to } P = \frac{3}{7} \times \text{Total length of } AB \][/tex]
4. Distance from [tex]\( B \)[/tex] to [tex]\( P \)[/tex]:
- Conversely, the distance from [tex]\( B \)[/tex] to [tex]\( P \)[/tex] is given by:
[tex]\[ \text{Distance from } B \text{ to } P = \frac{4}{7} \times \text{Total length of } AB \][/tex]
5. Comparing the Distances:
- [tex]\(\frac{3}{7}\)[/tex] of the distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex] is approximately 0.4286 (rounded to four decimal places).
- [tex]\(\frac{4}{7}\)[/tex] of the distance from [tex]\( B \)[/tex] to [tex]\( A \)[/tex] is approximately 0.5714 (rounded to four decimal places).
6. Conclusion:
- Since [tex]\( \frac{3}{7} \)[/tex] (0.4286) is less than [tex]\( \frac{4}{7} \)[/tex] (0.5714), point [tex]\( P \)[/tex] is closer to [tex]\( A \)[/tex].
Therefore, [tex]\( P \)[/tex] is closer to [tex]\( A \)[/tex] because it will be [tex]\(\frac{3}{7}\)[/tex] the distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex]. This confirms that the correct answer is:
P will be closer to [tex]\( A \)[/tex] because it will be [tex]\(\frac{3}{7}\)[/tex] the distance from [tex]\( A \)[/tex] to [tex]\( B \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.