Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the remainder when [tex]\( x^3 - 2 \)[/tex] is divided by [tex]\( x - 1 \)[/tex], we use polynomial division or the Remainder Theorem. The Remainder Theorem states that the remainder of the division of a polynomial [tex]\( f(x) \)[/tex] by a binomial of the form [tex]\( x - c \)[/tex] is [tex]\( f(c) \)[/tex].
Here, our polynomial [tex]\( f(x) \)[/tex] is [tex]\( x^3 - 2 \)[/tex] and our binomial [tex]\( x - c \)[/tex] is [tex]\( x - 1 \)[/tex]. According to the Remainder Theorem, the remainder is found by evaluating [tex]\( f(x) \)[/tex] at [tex]\( x = 1 \)[/tex].
Let's perform this calculation:
1. Substitute [tex]\( x = 1 \)[/tex] into the polynomial [tex]\( f(x) = x^3 - 2 \)[/tex]:
[tex]\[ f(1) = 1^3 - 2 \][/tex]
2. Simplify the expression:
[tex]\[ 1^3 - 2 = 1 - 2 = -1 \][/tex]
Therefore, the remainder when [tex]\( x^3 - 2 \)[/tex] is divided by [tex]\( x - 1 \)[/tex] is [tex]\(\boxed{-1}\)[/tex].
Here, our polynomial [tex]\( f(x) \)[/tex] is [tex]\( x^3 - 2 \)[/tex] and our binomial [tex]\( x - c \)[/tex] is [tex]\( x - 1 \)[/tex]. According to the Remainder Theorem, the remainder is found by evaluating [tex]\( f(x) \)[/tex] at [tex]\( x = 1 \)[/tex].
Let's perform this calculation:
1. Substitute [tex]\( x = 1 \)[/tex] into the polynomial [tex]\( f(x) = x^3 - 2 \)[/tex]:
[tex]\[ f(1) = 1^3 - 2 \][/tex]
2. Simplify the expression:
[tex]\[ 1^3 - 2 = 1 - 2 = -1 \][/tex]
Therefore, the remainder when [tex]\( x^3 - 2 \)[/tex] is divided by [tex]\( x - 1 \)[/tex] is [tex]\(\boxed{-1}\)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.