Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the remainder when [tex]\( x^3 - 2 \)[/tex] is divided by [tex]\( x - 1 \)[/tex], we use polynomial division or the Remainder Theorem. The Remainder Theorem states that the remainder of the division of a polynomial [tex]\( f(x) \)[/tex] by a binomial of the form [tex]\( x - c \)[/tex] is [tex]\( f(c) \)[/tex].
Here, our polynomial [tex]\( f(x) \)[/tex] is [tex]\( x^3 - 2 \)[/tex] and our binomial [tex]\( x - c \)[/tex] is [tex]\( x - 1 \)[/tex]. According to the Remainder Theorem, the remainder is found by evaluating [tex]\( f(x) \)[/tex] at [tex]\( x = 1 \)[/tex].
Let's perform this calculation:
1. Substitute [tex]\( x = 1 \)[/tex] into the polynomial [tex]\( f(x) = x^3 - 2 \)[/tex]:
[tex]\[ f(1) = 1^3 - 2 \][/tex]
2. Simplify the expression:
[tex]\[ 1^3 - 2 = 1 - 2 = -1 \][/tex]
Therefore, the remainder when [tex]\( x^3 - 2 \)[/tex] is divided by [tex]\( x - 1 \)[/tex] is [tex]\(\boxed{-1}\)[/tex].
Here, our polynomial [tex]\( f(x) \)[/tex] is [tex]\( x^3 - 2 \)[/tex] and our binomial [tex]\( x - c \)[/tex] is [tex]\( x - 1 \)[/tex]. According to the Remainder Theorem, the remainder is found by evaluating [tex]\( f(x) \)[/tex] at [tex]\( x = 1 \)[/tex].
Let's perform this calculation:
1. Substitute [tex]\( x = 1 \)[/tex] into the polynomial [tex]\( f(x) = x^3 - 2 \)[/tex]:
[tex]\[ f(1) = 1^3 - 2 \][/tex]
2. Simplify the expression:
[tex]\[ 1^3 - 2 = 1 - 2 = -1 \][/tex]
Therefore, the remainder when [tex]\( x^3 - 2 \)[/tex] is divided by [tex]\( x - 1 \)[/tex] is [tex]\(\boxed{-1}\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.