Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the problem of dividing the polynomial [tex]\(x^3 - 2x^2 - 10x + 21\)[/tex] by [tex]\(x^2 + x - 7\)[/tex], we can use polynomial long division to find the quotient and remainder.
Here’s the step-by-step process:
1. Setup the Division:
[tex]\[ \begin{array}{r|l} x^2 + x - 7 & x^3 - 2x^2 - 10x + 21 \\ \end{array} \][/tex]
2. First Division Step:
- Divide the leading term of the numerator ([tex]\(x^3\)[/tex]) by the leading term of the denominator ([tex]\(x^2\)[/tex]):
[tex]\[ \frac{x^3}{x^2} = x \][/tex]
- The first term of the quotient is [tex]\(x\)[/tex].
3. Multiply and Subtract:
- Multiply [tex]\(x\)[/tex] by [tex]\(x^2 + x - 7\)[/tex]:
[tex]\[ x \cdot (x^2 + x - 7) = x^3 + x^2 - 7x \][/tex]
- Subtract this from the original polynomial:
[tex]\[ x^3 - 2x^2 - 10x + 21 - (x^3 + x^2 - 7x) = -3x^2 - 3x + 21 \][/tex]
4. Second Division Step:
- Divide the new leading term [tex]\(-3x^2\)[/tex] by the leading term [tex]\(x^2\)[/tex]:
[tex]\[ \frac{-3x^2}{x^2} = -3 \][/tex]
- The next term of the quotient is [tex]\(-3\)[/tex].
5. Multiply and Subtract:
- Multiply [tex]\(-3\)[/tex] by [tex]\(x^2 + x - 7\)[/tex]:
[tex]\[ -3 \cdot (x^2 + x - 7) = -3x^2 - 3x + 21 \][/tex]
- Subtract this from the previous result:
[tex]\[ -3x^2 - 3x + 21 - (-3x^2 - 3x + 21) = 0 \][/tex]
Since the remainder is zero, the quotient of the division is [tex]\(x - 3\)[/tex] and the remainder is zero.
Hence, the quotient is [tex]\(x - 3\)[/tex].
From the quotient, the value of [tex]\(A\)[/tex] (the coefficient of the [tex]\(x\)[/tex] term) is [tex]\(1\)[/tex].
Therefore, the value of [tex]\(A\)[/tex] is:
[tex]\[ \boxed{1} \][/tex]
Here’s the step-by-step process:
1. Setup the Division:
[tex]\[ \begin{array}{r|l} x^2 + x - 7 & x^3 - 2x^2 - 10x + 21 \\ \end{array} \][/tex]
2. First Division Step:
- Divide the leading term of the numerator ([tex]\(x^3\)[/tex]) by the leading term of the denominator ([tex]\(x^2\)[/tex]):
[tex]\[ \frac{x^3}{x^2} = x \][/tex]
- The first term of the quotient is [tex]\(x\)[/tex].
3. Multiply and Subtract:
- Multiply [tex]\(x\)[/tex] by [tex]\(x^2 + x - 7\)[/tex]:
[tex]\[ x \cdot (x^2 + x - 7) = x^3 + x^2 - 7x \][/tex]
- Subtract this from the original polynomial:
[tex]\[ x^3 - 2x^2 - 10x + 21 - (x^3 + x^2 - 7x) = -3x^2 - 3x + 21 \][/tex]
4. Second Division Step:
- Divide the new leading term [tex]\(-3x^2\)[/tex] by the leading term [tex]\(x^2\)[/tex]:
[tex]\[ \frac{-3x^2}{x^2} = -3 \][/tex]
- The next term of the quotient is [tex]\(-3\)[/tex].
5. Multiply and Subtract:
- Multiply [tex]\(-3\)[/tex] by [tex]\(x^2 + x - 7\)[/tex]:
[tex]\[ -3 \cdot (x^2 + x - 7) = -3x^2 - 3x + 21 \][/tex]
- Subtract this from the previous result:
[tex]\[ -3x^2 - 3x + 21 - (-3x^2 - 3x + 21) = 0 \][/tex]
Since the remainder is zero, the quotient of the division is [tex]\(x - 3\)[/tex] and the remainder is zero.
Hence, the quotient is [tex]\(x - 3\)[/tex].
From the quotient, the value of [tex]\(A\)[/tex] (the coefficient of the [tex]\(x\)[/tex] term) is [tex]\(1\)[/tex].
Therefore, the value of [tex]\(A\)[/tex] is:
[tex]\[ \boxed{1} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.