Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Dividing Polynomials

Casey is dividing [tex][tex]$x^3 - 2x^2 - 10x + 21$[/tex][/tex] by [tex][tex]$x^2 + x - 7$[/tex][/tex] using a division table. His work is shown here.

What is the value of [tex]A[/tex]?

A. -3
B. -1
C. 1
D. 3

Sagot :

To solve the problem of dividing the polynomial [tex]\(x^3 - 2x^2 - 10x + 21\)[/tex] by [tex]\(x^2 + x - 7\)[/tex], we can use polynomial long division to find the quotient and remainder.

Here’s the step-by-step process:

1. Setup the Division:
[tex]\[ \begin{array}{r|l} x^2 + x - 7 & x^3 - 2x^2 - 10x + 21 \\ \end{array} \][/tex]

2. First Division Step:
- Divide the leading term of the numerator ([tex]\(x^3\)[/tex]) by the leading term of the denominator ([tex]\(x^2\)[/tex]):
[tex]\[ \frac{x^3}{x^2} = x \][/tex]
- The first term of the quotient is [tex]\(x\)[/tex].

3. Multiply and Subtract:
- Multiply [tex]\(x\)[/tex] by [tex]\(x^2 + x - 7\)[/tex]:
[tex]\[ x \cdot (x^2 + x - 7) = x^3 + x^2 - 7x \][/tex]
- Subtract this from the original polynomial:
[tex]\[ x^3 - 2x^2 - 10x + 21 - (x^3 + x^2 - 7x) = -3x^2 - 3x + 21 \][/tex]

4. Second Division Step:
- Divide the new leading term [tex]\(-3x^2\)[/tex] by the leading term [tex]\(x^2\)[/tex]:
[tex]\[ \frac{-3x^2}{x^2} = -3 \][/tex]
- The next term of the quotient is [tex]\(-3\)[/tex].

5. Multiply and Subtract:
- Multiply [tex]\(-3\)[/tex] by [tex]\(x^2 + x - 7\)[/tex]:
[tex]\[ -3 \cdot (x^2 + x - 7) = -3x^2 - 3x + 21 \][/tex]
- Subtract this from the previous result:
[tex]\[ -3x^2 - 3x + 21 - (-3x^2 - 3x + 21) = 0 \][/tex]

Since the remainder is zero, the quotient of the division is [tex]\(x - 3\)[/tex] and the remainder is zero.

Hence, the quotient is [tex]\(x - 3\)[/tex].

From the quotient, the value of [tex]\(A\)[/tex] (the coefficient of the [tex]\(x\)[/tex] term) is [tex]\(1\)[/tex].

Therefore, the value of [tex]\(A\)[/tex] is:
[tex]\[ \boxed{1} \][/tex]