Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To rationalize the denominator of the expression [tex]\(\frac{1}{\sqrt{9} - \sqrt{8}}\)[/tex], we'll follow these steps:
1. Identify the Conjugate: The conjugate of [tex]\(\sqrt{9} - \sqrt{8}\)[/tex] is [tex]\(\sqrt{9} + \sqrt{8}\)[/tex].
2. Multiply the Numerator and the Denominator by the Conjugate:
[tex]\[ \frac{1}{\sqrt{9} - \sqrt{8}} \cdot \frac{\sqrt{9} + \sqrt{8}}{\sqrt{9} + \sqrt{8}} \][/tex]
3. Simplify the Denominator:
We use the difference of squares formula: [tex]\((a - b)(a + b) = a^2 - b^2\)[/tex],
where [tex]\(a = \sqrt{9}\)[/tex] and [tex]\(b = \sqrt{8}\)[/tex]:
[tex]\[ (\sqrt{9} - \sqrt{8})(\sqrt{9} + \sqrt{8}) = (\sqrt{9})^2 - (\sqrt{8})^2 = 9 - 8 = 1 \][/tex]
4. Substitute and Simplify:
The expression now becomes:
[tex]\[ \frac{\sqrt{9} + \sqrt{8}}{1} = \sqrt{9} + \sqrt{8} \][/tex]
5. Final Simplification:
[tex]\[ \sqrt{9} + \sqrt{8} = 3 + \sqrt{8} \][/tex]
So, the rationalized form of [tex]\(\frac{1}{\sqrt{9} - \sqrt{8}}\)[/tex] is [tex]\(3 + \sqrt{8}\)[/tex].
1. Identify the Conjugate: The conjugate of [tex]\(\sqrt{9} - \sqrt{8}\)[/tex] is [tex]\(\sqrt{9} + \sqrt{8}\)[/tex].
2. Multiply the Numerator and the Denominator by the Conjugate:
[tex]\[ \frac{1}{\sqrt{9} - \sqrt{8}} \cdot \frac{\sqrt{9} + \sqrt{8}}{\sqrt{9} + \sqrt{8}} \][/tex]
3. Simplify the Denominator:
We use the difference of squares formula: [tex]\((a - b)(a + b) = a^2 - b^2\)[/tex],
where [tex]\(a = \sqrt{9}\)[/tex] and [tex]\(b = \sqrt{8}\)[/tex]:
[tex]\[ (\sqrt{9} - \sqrt{8})(\sqrt{9} + \sqrt{8}) = (\sqrt{9})^2 - (\sqrt{8})^2 = 9 - 8 = 1 \][/tex]
4. Substitute and Simplify:
The expression now becomes:
[tex]\[ \frac{\sqrt{9} + \sqrt{8}}{1} = \sqrt{9} + \sqrt{8} \][/tex]
5. Final Simplification:
[tex]\[ \sqrt{9} + \sqrt{8} = 3 + \sqrt{8} \][/tex]
So, the rationalized form of [tex]\(\frac{1}{\sqrt{9} - \sqrt{8}}\)[/tex] is [tex]\(3 + \sqrt{8}\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.