Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's solve the equation [tex]\(\sin x - \sqrt{3} \cos x = 2\)[/tex] step-by-step:
1. Identify the type of equation: The equation [tex]\(\sin x - \sqrt{3} \cos x = 2\)[/tex] is a trigonometric equation.
2. Combine the sine and cosine terms: We can combine the sine and cosine terms by expressing them as a single sine function. This can be done by recognizing that [tex]\(\sin x - \sqrt{3} \cos x\)[/tex] can be written in the form [tex]\(R \sin(x + \phi)\)[/tex].
We know the identity:
[tex]\[ a \sin x + b \cos x = R \sin(x + \phi) \][/tex]
where [tex]\(R = \sqrt{a^2 + b^2}\)[/tex] and [tex]\(\tan \phi = \frac{b}{a}\)[/tex].
For our equation, [tex]\(a = 1\)[/tex] and [tex]\(b = -\sqrt{3}\)[/tex]:
[tex]\[ R = \sqrt{1^2 + (-\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \][/tex]
So, we have:
[tex]\[ \sin x - \sqrt{3} \cos x = 2 \sin(x + \phi) \][/tex]
3. Find [tex]\(\phi\)[/tex]: To find [tex]\(\phi\)[/tex], we use [tex]\(\tan \phi = \frac{-\sqrt{3}}{1} = -\sqrt{3}\)[/tex].
The angle [tex]\(\phi\)[/tex] for which [tex]\(\tan \phi = -\sqrt{3}\)[/tex] is [tex]\(\phi = -\pi/3\)[/tex] (since [tex]\(\tan(-\pi/3) = -\sqrt{3}\)[/tex]).
4. Rewrite the equation: Substitute [tex]\(R = 2\)[/tex] and [tex]\(\phi = -\pi/3\)[/tex] into the equation:
[tex]\[ \sin x - \sqrt{3} \cos x = 2 \sin(x + (-\pi/3)) = 2 \sin(x - \pi/3) \][/tex]
So, the original equation [tex]\(\sin x - \sqrt{3} \cos x = 2\)[/tex] is equivalent to:
[tex]\[ 2 \sin(x - \pi/3) = 2 \][/tex]
5. Simplify: Divide both sides by 2:
[tex]\[ \sin(x - \pi/3) = 1 \][/tex]
6. Solve for [tex]\(x\)[/tex]: We need to find the values of [tex]\(x\)[/tex] such that [tex]\(\sin(x - \pi/3) = 1\)[/tex].
The sine function equals 1 at [tex]\( \frac{\pi}{2} + 2k\pi \)[/tex] where [tex]\( k \)[/tex] is any integer:
[tex]\[ x - \pi/3 = \frac{\pi}{2} + 2k\pi \][/tex]
Therefore, solving for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{\pi}{2} + \pi/3 + 2k\pi \][/tex]
Simplifying the term [tex]\(\frac{\pi}{2} + \pi/3\)[/tex]:
[tex]\[ \frac{\pi}{2} + \pi/3 = \frac{3\pi}{6} + \frac{2\pi}{6} = \frac{5\pi}{6} \][/tex]
So, the general solution is:
[tex]\[ x = \frac{5\pi}{6} + 2k\pi \quad \text{where } k \text{ is any integer} \][/tex]
7. Specific solutions: For [tex]\(k = 0\)[/tex], we get:
[tex]\[ x = \frac{5\pi}{6} \][/tex]
Thus, one specific solution to the equation [tex]\(\sin x - \sqrt{3} \cos x = 2\)[/tex] is:
[tex]\[ x = \frac{5\pi}{6} \][/tex]
1. Identify the type of equation: The equation [tex]\(\sin x - \sqrt{3} \cos x = 2\)[/tex] is a trigonometric equation.
2. Combine the sine and cosine terms: We can combine the sine and cosine terms by expressing them as a single sine function. This can be done by recognizing that [tex]\(\sin x - \sqrt{3} \cos x\)[/tex] can be written in the form [tex]\(R \sin(x + \phi)\)[/tex].
We know the identity:
[tex]\[ a \sin x + b \cos x = R \sin(x + \phi) \][/tex]
where [tex]\(R = \sqrt{a^2 + b^2}\)[/tex] and [tex]\(\tan \phi = \frac{b}{a}\)[/tex].
For our equation, [tex]\(a = 1\)[/tex] and [tex]\(b = -\sqrt{3}\)[/tex]:
[tex]\[ R = \sqrt{1^2 + (-\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \][/tex]
So, we have:
[tex]\[ \sin x - \sqrt{3} \cos x = 2 \sin(x + \phi) \][/tex]
3. Find [tex]\(\phi\)[/tex]: To find [tex]\(\phi\)[/tex], we use [tex]\(\tan \phi = \frac{-\sqrt{3}}{1} = -\sqrt{3}\)[/tex].
The angle [tex]\(\phi\)[/tex] for which [tex]\(\tan \phi = -\sqrt{3}\)[/tex] is [tex]\(\phi = -\pi/3\)[/tex] (since [tex]\(\tan(-\pi/3) = -\sqrt{3}\)[/tex]).
4. Rewrite the equation: Substitute [tex]\(R = 2\)[/tex] and [tex]\(\phi = -\pi/3\)[/tex] into the equation:
[tex]\[ \sin x - \sqrt{3} \cos x = 2 \sin(x + (-\pi/3)) = 2 \sin(x - \pi/3) \][/tex]
So, the original equation [tex]\(\sin x - \sqrt{3} \cos x = 2\)[/tex] is equivalent to:
[tex]\[ 2 \sin(x - \pi/3) = 2 \][/tex]
5. Simplify: Divide both sides by 2:
[tex]\[ \sin(x - \pi/3) = 1 \][/tex]
6. Solve for [tex]\(x\)[/tex]: We need to find the values of [tex]\(x\)[/tex] such that [tex]\(\sin(x - \pi/3) = 1\)[/tex].
The sine function equals 1 at [tex]\( \frac{\pi}{2} + 2k\pi \)[/tex] where [tex]\( k \)[/tex] is any integer:
[tex]\[ x - \pi/3 = \frac{\pi}{2} + 2k\pi \][/tex]
Therefore, solving for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{\pi}{2} + \pi/3 + 2k\pi \][/tex]
Simplifying the term [tex]\(\frac{\pi}{2} + \pi/3\)[/tex]:
[tex]\[ \frac{\pi}{2} + \pi/3 = \frac{3\pi}{6} + \frac{2\pi}{6} = \frac{5\pi}{6} \][/tex]
So, the general solution is:
[tex]\[ x = \frac{5\pi}{6} + 2k\pi \quad \text{where } k \text{ is any integer} \][/tex]
7. Specific solutions: For [tex]\(k = 0\)[/tex], we get:
[tex]\[ x = \frac{5\pi}{6} \][/tex]
Thus, one specific solution to the equation [tex]\(\sin x - \sqrt{3} \cos x = 2\)[/tex] is:
[tex]\[ x = \frac{5\pi}{6} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.