Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's determine the equation needed to find out how long the bacteria have been in the dish. Here is a step-by-step explanation:
1. Start with the given data:
- Initial number of bacteria, [tex]\( A_0 = 300 \)[/tex]
- Current number of bacteria, [tex]\( A = 5000 \)[/tex]
- The bacteria triples every [tex]\( T = 3 \)[/tex] hours
2. Write the exponential growth equation:
[tex]\[ A = A_0 \cdot (3^{t/T}) \][/tex]
where [tex]\( t \)[/tex] is the time in hours.
3. Plug in the known values:
[tex]\[ 5000 = 300 \cdot (3^{t/3}) \][/tex]
4. Solve for [tex]\( t \)[/tex]:
- Divide both sides by 300:
[tex]\[ \frac{5000}{300} = 3^{t/3} \][/tex]
- Simplify the left-hand side:
[tex]\[ \frac{5000}{300} = 16.\overline{6} \][/tex]
So,
[tex]\[ 16.\overline{6} = 3^{t/3} \][/tex]
- To isolate [tex]\( t \)[/tex], take the natural logarithm of both sides:
[tex]\[ \ln(16.\overline{6}) = \ln(3^{t/3}) \][/tex]
- Use the properties of logarithms ([tex]\( \ln(a^b) = b\ln(a) \)[/tex]):
[tex]\[ \ln(16.\overline{6}) = \frac{t}{3} \ln(3) \][/tex]
- Solve for [tex]\( t \)[/tex]:
[tex]\[ t = 3 \cdot \frac{\ln(16.\overline{6})}{\ln(3)} \][/tex]
This is the equation that you would use to determine how long the bacteria have been in the dish.
1. Start with the given data:
- Initial number of bacteria, [tex]\( A_0 = 300 \)[/tex]
- Current number of bacteria, [tex]\( A = 5000 \)[/tex]
- The bacteria triples every [tex]\( T = 3 \)[/tex] hours
2. Write the exponential growth equation:
[tex]\[ A = A_0 \cdot (3^{t/T}) \][/tex]
where [tex]\( t \)[/tex] is the time in hours.
3. Plug in the known values:
[tex]\[ 5000 = 300 \cdot (3^{t/3}) \][/tex]
4. Solve for [tex]\( t \)[/tex]:
- Divide both sides by 300:
[tex]\[ \frac{5000}{300} = 3^{t/3} \][/tex]
- Simplify the left-hand side:
[tex]\[ \frac{5000}{300} = 16.\overline{6} \][/tex]
So,
[tex]\[ 16.\overline{6} = 3^{t/3} \][/tex]
- To isolate [tex]\( t \)[/tex], take the natural logarithm of both sides:
[tex]\[ \ln(16.\overline{6}) = \ln(3^{t/3}) \][/tex]
- Use the properties of logarithms ([tex]\( \ln(a^b) = b\ln(a) \)[/tex]):
[tex]\[ \ln(16.\overline{6}) = \frac{t}{3} \ln(3) \][/tex]
- Solve for [tex]\( t \)[/tex]:
[tex]\[ t = 3 \cdot \frac{\ln(16.\overline{6})}{\ln(3)} \][/tex]
This is the equation that you would use to determine how long the bacteria have been in the dish.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.