Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's determine the equation needed to find out how long the bacteria have been in the dish. Here is a step-by-step explanation:
1. Start with the given data:
- Initial number of bacteria, [tex]\( A_0 = 300 \)[/tex]
- Current number of bacteria, [tex]\( A = 5000 \)[/tex]
- The bacteria triples every [tex]\( T = 3 \)[/tex] hours
2. Write the exponential growth equation:
[tex]\[ A = A_0 \cdot (3^{t/T}) \][/tex]
where [tex]\( t \)[/tex] is the time in hours.
3. Plug in the known values:
[tex]\[ 5000 = 300 \cdot (3^{t/3}) \][/tex]
4. Solve for [tex]\( t \)[/tex]:
- Divide both sides by 300:
[tex]\[ \frac{5000}{300} = 3^{t/3} \][/tex]
- Simplify the left-hand side:
[tex]\[ \frac{5000}{300} = 16.\overline{6} \][/tex]
So,
[tex]\[ 16.\overline{6} = 3^{t/3} \][/tex]
- To isolate [tex]\( t \)[/tex], take the natural logarithm of both sides:
[tex]\[ \ln(16.\overline{6}) = \ln(3^{t/3}) \][/tex]
- Use the properties of logarithms ([tex]\( \ln(a^b) = b\ln(a) \)[/tex]):
[tex]\[ \ln(16.\overline{6}) = \frac{t}{3} \ln(3) \][/tex]
- Solve for [tex]\( t \)[/tex]:
[tex]\[ t = 3 \cdot \frac{\ln(16.\overline{6})}{\ln(3)} \][/tex]
This is the equation that you would use to determine how long the bacteria have been in the dish.
1. Start with the given data:
- Initial number of bacteria, [tex]\( A_0 = 300 \)[/tex]
- Current number of bacteria, [tex]\( A = 5000 \)[/tex]
- The bacteria triples every [tex]\( T = 3 \)[/tex] hours
2. Write the exponential growth equation:
[tex]\[ A = A_0 \cdot (3^{t/T}) \][/tex]
where [tex]\( t \)[/tex] is the time in hours.
3. Plug in the known values:
[tex]\[ 5000 = 300 \cdot (3^{t/3}) \][/tex]
4. Solve for [tex]\( t \)[/tex]:
- Divide both sides by 300:
[tex]\[ \frac{5000}{300} = 3^{t/3} \][/tex]
- Simplify the left-hand side:
[tex]\[ \frac{5000}{300} = 16.\overline{6} \][/tex]
So,
[tex]\[ 16.\overline{6} = 3^{t/3} \][/tex]
- To isolate [tex]\( t \)[/tex], take the natural logarithm of both sides:
[tex]\[ \ln(16.\overline{6}) = \ln(3^{t/3}) \][/tex]
- Use the properties of logarithms ([tex]\( \ln(a^b) = b\ln(a) \)[/tex]):
[tex]\[ \ln(16.\overline{6}) = \frac{t}{3} \ln(3) \][/tex]
- Solve for [tex]\( t \)[/tex]:
[tex]\[ t = 3 \cdot \frac{\ln(16.\overline{6})}{\ln(3)} \][/tex]
This is the equation that you would use to determine how long the bacteria have been in the dish.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.