At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To prove that [tex]\(\sum_{i=1}^n \left(x_i - \mu\right)^2 = \sum_{i=1}^n x_i^2 - n \mu^2\)[/tex], we will start by expanding the left side and then simplifying it to match the right side.
### Step 1: Define the mean
The mean, [tex]\(\mu\)[/tex], of the [tex]\(n\)[/tex] elements [tex]\(x_1, x_2, \ldots, x_n\)[/tex] is:
[tex]\[ \mu = \frac{1}{n} \sum_{i=1}^n x_i \][/tex]
### Step 2: Expand the left side
Let's start by expanding the left-hand side of the equation:
[tex]\[ \sum_{i=1}^n (x_i - \mu)^2 \][/tex]
Expanding this, we get:
[tex]\[ \sum_{i=1}^n (x_i - \mu)^2 = \sum_{i=1}^n (x_i^2 - 2x_i \mu + \mu^2) \][/tex]
### Step 3: Distribute the summation
We can distribute the summation over the terms in the expanded expression:
[tex]\[ \sum_{i=1}^n x_i^2 - \sum_{i=1}^n 2x_i \mu + \sum_{i=1}^n \mu^2 \][/tex]
### Step 4: Simplify each term
Let's simplify each term step-by-step:
1. First term:
[tex]\[ \sum_{i=1}^n x_i^2 \][/tex]
This term remains as is.
2. Second term:
[tex]\[ \sum_{i=1}^n 2x_i \mu = 2\mu \sum_{i=1}^n x_i \][/tex]
Since [tex]\(\mu\)[/tex] is a constant with respect to the summation, it can be taken outside the summation sign.
3. Third term:
[tex]\[ \sum_{i=1}^n \mu^2 \][/tex]
Since [tex]\(\mu^2\)[/tex] is also a constant with respect to the summation:
[tex]\[ \sum_{i=1}^n \mu^2 = n \mu^2 \][/tex]
### Step 5: Combine the simplified terms
Now, combining the simplified terms, we have:
[tex]\[ \sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n \mu^2 \][/tex]
### Step 6: Substitute the expression for the mean
Recall that [tex]\(\mu = \frac{1}{n} \sum_{i=1}^n x_i\)[/tex]. Therefore:
[tex]\[ 2\mu \sum_{i=1}^n x_i = 2 \left(\frac{1}{n} \sum_{i=1}^n x_i\right) \sum_{i=1}^n x_i = 2 \frac{1}{n} \left(\sum_{i=1}^n x_i\right)^2 = \frac{2}{n} \left(\sum_{i=1}^n x_i\right) \sum_{i=1}^n x_i = 2 \sum_{i=1}^n x_i \][/tex]
### Step 7: Final expression
Putting it all together:
[tex]\[ \sum_{i=1}^n (x_i - \mu)^2 = \sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n \mu^2 = \sum_{i=1}^n x_i^2 - 2 \sum_{i=1}^n x_i \mu + n \mu^2 \][/tex]
Finally, notice that [tex]\(\sum_{i=1}^n x_i \mu = \sum_{i=1}^n \mu x_i = n \mu \mu = n\mu^2\)[/tex] as [tex]\(\mu = \frac{1}{n} \sum_{i=1}^n x_i\)[/tex]:
[tex]\[ = \sum_{i=1}^n x_i^2 - 2n \mu^2 + n \mu^2 = \sum_{i=1}^n x_i^2 - n \mu^2 \][/tex]
Hence, we have:
[tex]\[ \sum_{i=1}^n (x_i - \mu)^2 = \sum_{i=1}^n x_i^2 - n \mu^2 \][/tex]
This completes the proof.
### Step 1: Define the mean
The mean, [tex]\(\mu\)[/tex], of the [tex]\(n\)[/tex] elements [tex]\(x_1, x_2, \ldots, x_n\)[/tex] is:
[tex]\[ \mu = \frac{1}{n} \sum_{i=1}^n x_i \][/tex]
### Step 2: Expand the left side
Let's start by expanding the left-hand side of the equation:
[tex]\[ \sum_{i=1}^n (x_i - \mu)^2 \][/tex]
Expanding this, we get:
[tex]\[ \sum_{i=1}^n (x_i - \mu)^2 = \sum_{i=1}^n (x_i^2 - 2x_i \mu + \mu^2) \][/tex]
### Step 3: Distribute the summation
We can distribute the summation over the terms in the expanded expression:
[tex]\[ \sum_{i=1}^n x_i^2 - \sum_{i=1}^n 2x_i \mu + \sum_{i=1}^n \mu^2 \][/tex]
### Step 4: Simplify each term
Let's simplify each term step-by-step:
1. First term:
[tex]\[ \sum_{i=1}^n x_i^2 \][/tex]
This term remains as is.
2. Second term:
[tex]\[ \sum_{i=1}^n 2x_i \mu = 2\mu \sum_{i=1}^n x_i \][/tex]
Since [tex]\(\mu\)[/tex] is a constant with respect to the summation, it can be taken outside the summation sign.
3. Third term:
[tex]\[ \sum_{i=1}^n \mu^2 \][/tex]
Since [tex]\(\mu^2\)[/tex] is also a constant with respect to the summation:
[tex]\[ \sum_{i=1}^n \mu^2 = n \mu^2 \][/tex]
### Step 5: Combine the simplified terms
Now, combining the simplified terms, we have:
[tex]\[ \sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n \mu^2 \][/tex]
### Step 6: Substitute the expression for the mean
Recall that [tex]\(\mu = \frac{1}{n} \sum_{i=1}^n x_i\)[/tex]. Therefore:
[tex]\[ 2\mu \sum_{i=1}^n x_i = 2 \left(\frac{1}{n} \sum_{i=1}^n x_i\right) \sum_{i=1}^n x_i = 2 \frac{1}{n} \left(\sum_{i=1}^n x_i\right)^2 = \frac{2}{n} \left(\sum_{i=1}^n x_i\right) \sum_{i=1}^n x_i = 2 \sum_{i=1}^n x_i \][/tex]
### Step 7: Final expression
Putting it all together:
[tex]\[ \sum_{i=1}^n (x_i - \mu)^2 = \sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n \mu^2 = \sum_{i=1}^n x_i^2 - 2 \sum_{i=1}^n x_i \mu + n \mu^2 \][/tex]
Finally, notice that [tex]\(\sum_{i=1}^n x_i \mu = \sum_{i=1}^n \mu x_i = n \mu \mu = n\mu^2\)[/tex] as [tex]\(\mu = \frac{1}{n} \sum_{i=1}^n x_i\)[/tex]:
[tex]\[ = \sum_{i=1}^n x_i^2 - 2n \mu^2 + n \mu^2 = \sum_{i=1}^n x_i^2 - n \mu^2 \][/tex]
Hence, we have:
[tex]\[ \sum_{i=1}^n (x_i - \mu)^2 = \sum_{i=1}^n x_i^2 - n \mu^2 \][/tex]
This completes the proof.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.