Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's analyze the expression [tex]\((2x^2 + 4x - 7)(x - 2)\)[/tex] and identify which one of the given options does not correctly use the distributive property.
### Option A:
[tex]\[ (2x^2 + 4x - 7)(x) + (2x^2 + 4x - 7)(-2) \][/tex]
This correctly applies the distributive property by splitting [tex]\((x - 2)\)[/tex] into [tex]\(x\)[/tex] and [tex]\(-2\)[/tex] and distributing [tex]\((2x^2 + 4x - 7)\)[/tex] across both terms:
[tex]\[ (2x^2 + 4x - 7)x + (2x^2 + 4x - 7)(-2) \][/tex]
### Option B:
[tex]\[ (2x^2)(x) + (2x^2)(-2) + (4x)(x) + (4x)(-2) + (-7)(x) + (-7)(-2) \][/tex]
This also correctly applies the distributive property by distributing each term in [tex]\((2x^2 + 4x - 7)\)[/tex] across each term in [tex]\((x - 2)\)[/tex]:
[tex]\[ (2x^2)x + (2x^2)(-2) + (4x)x + (4x)(-2) + (-7)x + (-7)(-2) \][/tex]
### Option C:
[tex]\[ (2x^2 + 4 - 7)(x) + (2x^2 + 4x - 7)(x - 2) \][/tex]
This is problematic. First, notice that [tex]\(2x^2 + 4 - 7\)[/tex] is not equivalent to [tex]\(2x^2 + 4x - 7\)[/tex] because the [tex]\(4x\)[/tex] term is missing from the first part of the expression on the left. Therefore, it does not correctly rewrite the original expression using the distributive property.
### Option D:
[tex]\[ (2x^2)(x - 2) + (4x)(x - 2) + (-7)(x - 2) \][/tex]
This correctly applies the distributive property by splitting [tex]\((2x^2 + 4x - 7)\)[/tex] and distributing each term across [tex]\((x - 2)\)[/tex]:
[tex]\[ (2x^2)(x - 2) + (4x)(x - 2) + (-7)(x - 2) \][/tex]
### Conclusion:
The correct answer is that Option C does not correctly use the distributive property:
[tex]\[ (2x^2 + 4 - 7)(x) + (2x^2 + 4x - 7)(x - 2) \][/tex]
Thus, the incorrect option is:
[tex]\[ \boxed{C} \][/tex]
### Option A:
[tex]\[ (2x^2 + 4x - 7)(x) + (2x^2 + 4x - 7)(-2) \][/tex]
This correctly applies the distributive property by splitting [tex]\((x - 2)\)[/tex] into [tex]\(x\)[/tex] and [tex]\(-2\)[/tex] and distributing [tex]\((2x^2 + 4x - 7)\)[/tex] across both terms:
[tex]\[ (2x^2 + 4x - 7)x + (2x^2 + 4x - 7)(-2) \][/tex]
### Option B:
[tex]\[ (2x^2)(x) + (2x^2)(-2) + (4x)(x) + (4x)(-2) + (-7)(x) + (-7)(-2) \][/tex]
This also correctly applies the distributive property by distributing each term in [tex]\((2x^2 + 4x - 7)\)[/tex] across each term in [tex]\((x - 2)\)[/tex]:
[tex]\[ (2x^2)x + (2x^2)(-2) + (4x)x + (4x)(-2) + (-7)x + (-7)(-2) \][/tex]
### Option C:
[tex]\[ (2x^2 + 4 - 7)(x) + (2x^2 + 4x - 7)(x - 2) \][/tex]
This is problematic. First, notice that [tex]\(2x^2 + 4 - 7\)[/tex] is not equivalent to [tex]\(2x^2 + 4x - 7\)[/tex] because the [tex]\(4x\)[/tex] term is missing from the first part of the expression on the left. Therefore, it does not correctly rewrite the original expression using the distributive property.
### Option D:
[tex]\[ (2x^2)(x - 2) + (4x)(x - 2) + (-7)(x - 2) \][/tex]
This correctly applies the distributive property by splitting [tex]\((2x^2 + 4x - 7)\)[/tex] and distributing each term across [tex]\((x - 2)\)[/tex]:
[tex]\[ (2x^2)(x - 2) + (4x)(x - 2) + (-7)(x - 2) \][/tex]
### Conclusion:
The correct answer is that Option C does not correctly use the distributive property:
[tex]\[ (2x^2 + 4 - 7)(x) + (2x^2 + 4x - 7)(x - 2) \][/tex]
Thus, the incorrect option is:
[tex]\[ \boxed{C} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.