Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the inequality [tex]\( |13x| > -5 \)[/tex], let's analyze the given absolute value expression step-by-step.
1. Understanding the Absolute Value Function: The absolute value function, written as [tex]\( |13x| \)[/tex], always gives a non-negative result. By definition:
[tex]\[ |13x| \geq 0 \][/tex]
This means that the smallest value [tex]\( |13x| \)[/tex] can take is [tex]\( 0 \)[/tex].
2. Comparing with [tex]\(-5\)[/tex]: Notice that [tex]\(-5\)[/tex] is a negative number. Since the absolute value of any real number is always non-negative, it is always greater than [tex]\(-5\)[/tex]:
[tex]\[ |13x| \geq 0 > -5 \][/tex]
3. Implications for [tex]\( x \)[/tex]: Since [tex]\( |13x| \)[/tex] is always non-negative and always greater than [tex]\(-5\)[/tex], this inequality is satisfied for all values of [tex]\( x \)[/tex]. No matter what [tex]\( x \)[/tex] you substitute into the expression [tex]\( 13x \)[/tex], the absolute value will always produce a value that is greater than [tex]\(-5\)[/tex].
Therefore, the correct answer is:
B. All values are solutions
1. Understanding the Absolute Value Function: The absolute value function, written as [tex]\( |13x| \)[/tex], always gives a non-negative result. By definition:
[tex]\[ |13x| \geq 0 \][/tex]
This means that the smallest value [tex]\( |13x| \)[/tex] can take is [tex]\( 0 \)[/tex].
2. Comparing with [tex]\(-5\)[/tex]: Notice that [tex]\(-5\)[/tex] is a negative number. Since the absolute value of any real number is always non-negative, it is always greater than [tex]\(-5\)[/tex]:
[tex]\[ |13x| \geq 0 > -5 \][/tex]
3. Implications for [tex]\( x \)[/tex]: Since [tex]\( |13x| \)[/tex] is always non-negative and always greater than [tex]\(-5\)[/tex], this inequality is satisfied for all values of [tex]\( x \)[/tex]. No matter what [tex]\( x \)[/tex] you substitute into the expression [tex]\( 13x \)[/tex], the absolute value will always produce a value that is greater than [tex]\(-5\)[/tex].
Therefore, the correct answer is:
B. All values are solutions
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.