Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve this problem, let's break it into manageable steps and understand the mechanics involved in circular motion.
1. Understanding the Question:
- A particle of mass [tex]\(m = 1 \, \text{kg}\)[/tex] is moving in a circular path of radius [tex]\(r = 1 \, \text{m}\)[/tex].
- The maximum tension the string can withstand (which is the maximum centripetal force) is [tex]\(T = 9.8 \, \text{N}\)[/tex].
- We are asked to find the change in speed and the change in velocity of the particle as it moves 60 degrees (π/3 radians) around the circle.
2. Calculating Angular Velocity ([tex]\(\omega\)[/tex]):
- The tension [tex]\(T\)[/tex] provides the centripetal force needed for circular motion:
[tex]\[ T = m r \omega^2 \][/tex]
- Solving for angular velocity ([tex]\(\omega\)[/tex]):
[tex]\[ \omega = \sqrt{\frac{T}{m r}} \][/tex]
Plugging in the values:
[tex]\[ \omega = \sqrt{\frac{9.8}{1 \cdot 1}} = \sqrt{9.8} \approx 3.1305 \, \text{rad/s} \][/tex]
3. Calculating Initial Speed (v):
- The linear speed [tex]\(v\)[/tex] is related to angular velocity by:
[tex]\[ v = r \omega \][/tex]
Plugging in the values:
[tex]\[ v = 1 \cdot 3.1305 \approx 3.1305 \, \text{m/s} \][/tex]
4. Change in Speed:
- In uniform circular motion, the speed [tex]\(v\)[/tex] remains constant. Therefore, the change in speed is:
[tex]\[ \Delta v = 0 \][/tex]
5. Change in Velocity:
- Although the speed remains constant, the direction of the velocity vector changes as the particle moves along the circular path.
- The change in velocity over an angle [tex]\(\theta\)[/tex] (in radians) can be calculated using:
[tex]\[ \Delta \text{velocity} = v \cdot 2 \cdot \sin\left(\frac{\theta}{2}\right) \][/tex]
- For [tex]\(\theta = 60^\circ = \frac{\pi}{3}\)[/tex]:
[tex]\[ \Delta \text{velocity} = 3.1305 \cdot 2 \cdot \sin\left(\frac{\pi}{6}\right) = 3.1305 \cdot 2 \cdot 0.5 \approx 3.1305 \, \text{m/s} \][/tex]
Summary:
- The change in speed is 0.
- The change in velocity is approximately 3.1305 m/s.
Therefore, the correct option is:
A) [tex]\(0, v 2v\)[/tex]
1. Understanding the Question:
- A particle of mass [tex]\(m = 1 \, \text{kg}\)[/tex] is moving in a circular path of radius [tex]\(r = 1 \, \text{m}\)[/tex].
- The maximum tension the string can withstand (which is the maximum centripetal force) is [tex]\(T = 9.8 \, \text{N}\)[/tex].
- We are asked to find the change in speed and the change in velocity of the particle as it moves 60 degrees (π/3 radians) around the circle.
2. Calculating Angular Velocity ([tex]\(\omega\)[/tex]):
- The tension [tex]\(T\)[/tex] provides the centripetal force needed for circular motion:
[tex]\[ T = m r \omega^2 \][/tex]
- Solving for angular velocity ([tex]\(\omega\)[/tex]):
[tex]\[ \omega = \sqrt{\frac{T}{m r}} \][/tex]
Plugging in the values:
[tex]\[ \omega = \sqrt{\frac{9.8}{1 \cdot 1}} = \sqrt{9.8} \approx 3.1305 \, \text{rad/s} \][/tex]
3. Calculating Initial Speed (v):
- The linear speed [tex]\(v\)[/tex] is related to angular velocity by:
[tex]\[ v = r \omega \][/tex]
Plugging in the values:
[tex]\[ v = 1 \cdot 3.1305 \approx 3.1305 \, \text{m/s} \][/tex]
4. Change in Speed:
- In uniform circular motion, the speed [tex]\(v\)[/tex] remains constant. Therefore, the change in speed is:
[tex]\[ \Delta v = 0 \][/tex]
5. Change in Velocity:
- Although the speed remains constant, the direction of the velocity vector changes as the particle moves along the circular path.
- The change in velocity over an angle [tex]\(\theta\)[/tex] (in radians) can be calculated using:
[tex]\[ \Delta \text{velocity} = v \cdot 2 \cdot \sin\left(\frac{\theta}{2}\right) \][/tex]
- For [tex]\(\theta = 60^\circ = \frac{\pi}{3}\)[/tex]:
[tex]\[ \Delta \text{velocity} = 3.1305 \cdot 2 \cdot \sin\left(\frac{\pi}{6}\right) = 3.1305 \cdot 2 \cdot 0.5 \approx 3.1305 \, \text{m/s} \][/tex]
Summary:
- The change in speed is 0.
- The change in velocity is approximately 3.1305 m/s.
Therefore, the correct option is:
A) [tex]\(0, v 2v\)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.