At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
The absolute value of any complex number [tex]\(a + bi\)[/tex] is the Euclidean distance from [tex]\((a, b)\)[/tex] to [tex]\((0, 0)\)[/tex] in the complex plane.
To understand this, let's break it down:
1. Complex Number Representation: A complex number is often written as [tex]\(a + bi\)[/tex], where [tex]\(a\)[/tex] is the real part and [tex]\(b\)[/tex] is the imaginary part.
2. Magnitude or Absolute Value: The magnitude (or absolute value) of a complex number [tex]\(a + bi\)[/tex] is denoted as [tex]\(|a + bi|\)[/tex]. This value represents the distance of the point [tex]\((a, b)\)[/tex] in the complex plane from the origin [tex]\((0, 0)\)[/tex].
3. Euclidean Distance Formula: This distance can be calculated using the Euclidean distance formula:
[tex]\[ \text{Distance} = \sqrt{(a - 0)^2 + (b - 0)^2} = \sqrt{a^2 + b^2} \][/tex]
4. Conclusion: Thus, the absolute value of the complex number [tex]\(a + bi\)[/tex] is the Euclidean distance from the point [tex]\((a, b)\)[/tex] to the origin [tex]\((0, 0)\)[/tex] in the complex plane.
Putting it all together, the completed definition is:
The absolute value of any complex number [tex]\(a + bi\)[/tex] is the Euclidean distance from [tex]\((a, b)\)[/tex] to [tex]\((0, 0)\)[/tex] in the complex plane.
To understand this, let's break it down:
1. Complex Number Representation: A complex number is often written as [tex]\(a + bi\)[/tex], where [tex]\(a\)[/tex] is the real part and [tex]\(b\)[/tex] is the imaginary part.
2. Magnitude or Absolute Value: The magnitude (or absolute value) of a complex number [tex]\(a + bi\)[/tex] is denoted as [tex]\(|a + bi|\)[/tex]. This value represents the distance of the point [tex]\((a, b)\)[/tex] in the complex plane from the origin [tex]\((0, 0)\)[/tex].
3. Euclidean Distance Formula: This distance can be calculated using the Euclidean distance formula:
[tex]\[ \text{Distance} = \sqrt{(a - 0)^2 + (b - 0)^2} = \sqrt{a^2 + b^2} \][/tex]
4. Conclusion: Thus, the absolute value of the complex number [tex]\(a + bi\)[/tex] is the Euclidean distance from the point [tex]\((a, b)\)[/tex] to the origin [tex]\((0, 0)\)[/tex] in the complex plane.
Putting it all together, the completed definition is:
The absolute value of any complex number [tex]\(a + bi\)[/tex] is the Euclidean distance from [tex]\((a, b)\)[/tex] to [tex]\((0, 0)\)[/tex] in the complex plane.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.