Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The absolute value of any complex number [tex]\(a + bi\)[/tex] is the Euclidean distance from [tex]\((a, b)\)[/tex] to [tex]\((0, 0)\)[/tex] in the complex plane.
To understand this, let's break it down:
1. Complex Number Representation: A complex number is often written as [tex]\(a + bi\)[/tex], where [tex]\(a\)[/tex] is the real part and [tex]\(b\)[/tex] is the imaginary part.
2. Magnitude or Absolute Value: The magnitude (or absolute value) of a complex number [tex]\(a + bi\)[/tex] is denoted as [tex]\(|a + bi|\)[/tex]. This value represents the distance of the point [tex]\((a, b)\)[/tex] in the complex plane from the origin [tex]\((0, 0)\)[/tex].
3. Euclidean Distance Formula: This distance can be calculated using the Euclidean distance formula:
[tex]\[ \text{Distance} = \sqrt{(a - 0)^2 + (b - 0)^2} = \sqrt{a^2 + b^2} \][/tex]
4. Conclusion: Thus, the absolute value of the complex number [tex]\(a + bi\)[/tex] is the Euclidean distance from the point [tex]\((a, b)\)[/tex] to the origin [tex]\((0, 0)\)[/tex] in the complex plane.
Putting it all together, the completed definition is:
The absolute value of any complex number [tex]\(a + bi\)[/tex] is the Euclidean distance from [tex]\((a, b)\)[/tex] to [tex]\((0, 0)\)[/tex] in the complex plane.
To understand this, let's break it down:
1. Complex Number Representation: A complex number is often written as [tex]\(a + bi\)[/tex], where [tex]\(a\)[/tex] is the real part and [tex]\(b\)[/tex] is the imaginary part.
2. Magnitude or Absolute Value: The magnitude (or absolute value) of a complex number [tex]\(a + bi\)[/tex] is denoted as [tex]\(|a + bi|\)[/tex]. This value represents the distance of the point [tex]\((a, b)\)[/tex] in the complex plane from the origin [tex]\((0, 0)\)[/tex].
3. Euclidean Distance Formula: This distance can be calculated using the Euclidean distance formula:
[tex]\[ \text{Distance} = \sqrt{(a - 0)^2 + (b - 0)^2} = \sqrt{a^2 + b^2} \][/tex]
4. Conclusion: Thus, the absolute value of the complex number [tex]\(a + bi\)[/tex] is the Euclidean distance from the point [tex]\((a, b)\)[/tex] to the origin [tex]\((0, 0)\)[/tex] in the complex plane.
Putting it all together, the completed definition is:
The absolute value of any complex number [tex]\(a + bi\)[/tex] is the Euclidean distance from [tex]\((a, b)\)[/tex] to [tex]\((0, 0)\)[/tex] in the complex plane.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.