Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To calculate the average atomic mass of element [tex]\( X \)[/tex], we need to use the given data for its isotopes. We will calculate the weighted mass contribution from each isotope and then sum these contributions.
1. Isotope [tex]\( X-63 \)[/tex]:
- Atomic mass: 62.9296 amu
- Abundance: 69.15%
2. Isotope [tex]\( X-65 \)[/tex]:
- Atomic mass: 64.9278 amu
- Abundance: 30.85%
Step 1: Calculate the weighted mass contribution of each isotope.
For isotope [tex]\( X-63 \)[/tex]:
[tex]\[ \text{Weighted mass of } X-63 = \text{Atomic mass of } X-63 \times \left(\frac{\text{Abundance of } X-63}{100}\right) \][/tex]
[tex]\[ \text{Weighted mass of } X-63 = 62.9296 \times \left(\frac{69.15}{100}\right) = 43.5158184 \, \text{amu} \][/tex]
For isotope [tex]\( X-65 \)[/tex]:
[tex]\[ \text{Weighted mass of } X-65 = \text{Atomic mass of } X-65 \times \left(\frac{\text{Abundance of } X-65}{100}\right) \][/tex]
[tex]\[ \text{Weighted mass of } X-65 = 64.9278 \times \left(\frac{30.85}{100}\right) = 20.0302263 \, \text{amu} \][/tex]
Step 2: Add the weighted mass contributions to determine the average atomic mass.
[tex]\[ \text{Average atomic mass} = \text{Weighted mass of } X-63 + \text{Weighted mass of } X-65 \][/tex]
[tex]\[ \text{Average atomic mass} = 43.5158184 \, \text{amu} + 20.0302263 \, \text{amu} = 63.5460447 \, \text{amu} \][/tex]
Step 3: Round the average atomic mass to the nearest hundredth.
[tex]\[ 63.5460447 \, \text{amu} \approx 63.55 \, \text{amu} \][/tex]
Therefore, the average atomic mass of element [tex]\( X \)[/tex] is [tex]\( \boxed{63.55} \, \text{amu} \)[/tex].
1. Isotope [tex]\( X-63 \)[/tex]:
- Atomic mass: 62.9296 amu
- Abundance: 69.15%
2. Isotope [tex]\( X-65 \)[/tex]:
- Atomic mass: 64.9278 amu
- Abundance: 30.85%
Step 1: Calculate the weighted mass contribution of each isotope.
For isotope [tex]\( X-63 \)[/tex]:
[tex]\[ \text{Weighted mass of } X-63 = \text{Atomic mass of } X-63 \times \left(\frac{\text{Abundance of } X-63}{100}\right) \][/tex]
[tex]\[ \text{Weighted mass of } X-63 = 62.9296 \times \left(\frac{69.15}{100}\right) = 43.5158184 \, \text{amu} \][/tex]
For isotope [tex]\( X-65 \)[/tex]:
[tex]\[ \text{Weighted mass of } X-65 = \text{Atomic mass of } X-65 \times \left(\frac{\text{Abundance of } X-65}{100}\right) \][/tex]
[tex]\[ \text{Weighted mass of } X-65 = 64.9278 \times \left(\frac{30.85}{100}\right) = 20.0302263 \, \text{amu} \][/tex]
Step 2: Add the weighted mass contributions to determine the average atomic mass.
[tex]\[ \text{Average atomic mass} = \text{Weighted mass of } X-63 + \text{Weighted mass of } X-65 \][/tex]
[tex]\[ \text{Average atomic mass} = 43.5158184 \, \text{amu} + 20.0302263 \, \text{amu} = 63.5460447 \, \text{amu} \][/tex]
Step 3: Round the average atomic mass to the nearest hundredth.
[tex]\[ 63.5460447 \, \text{amu} \approx 63.55 \, \text{amu} \][/tex]
Therefore, the average atomic mass of element [tex]\( X \)[/tex] is [tex]\( \boxed{63.55} \, \text{amu} \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.