At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the equivalent expression to the given expression [tex]\(4 \ln x + \ln 3 - \ln x\)[/tex], we need to simplify the logarithmic terms step by step.
1. Combine like terms:
We start by focusing on the terms that involve [tex]\(\ln x\)[/tex]. Specifically, we have [tex]\(4 \ln x\)[/tex] and [tex]\(- \ln x\)[/tex].
[tex]\[ 4 \ln x - \ln x = (4 - 1) \ln x = 3 \ln x \][/tex]
2. Re-write the expression:
After combining the logarithmic terms, the expression simplifies to:
[tex]\[ 3 \ln x + \ln 3 \][/tex]
3. Combine logarithms:
Now, we use the logarithm property that states: [tex]\(\ln a + \ln b = \ln(ab)\)[/tex]. Applying this rule, we combine [tex]\(3 \ln x\)[/tex] and [tex]\(\ln 3\)[/tex] into a single logarithm:
[tex]\[ 3 \ln x + \ln 3 = \ln (x^3) + \ln 3 = \ln (3 \cdot x^3) = \ln (3x^3) \][/tex]
Therefore, the expression [tex]\(4 \ln x + \ln 3 - \ln x\)[/tex] is equivalent to [tex]\(\ln \left(3 x^3\right)\)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{\ln \left(3 x^3\right)} \][/tex]
So the correct choice is:
[tex]\[ \boxed{\text{D}} \][/tex]
1. Combine like terms:
We start by focusing on the terms that involve [tex]\(\ln x\)[/tex]. Specifically, we have [tex]\(4 \ln x\)[/tex] and [tex]\(- \ln x\)[/tex].
[tex]\[ 4 \ln x - \ln x = (4 - 1) \ln x = 3 \ln x \][/tex]
2. Re-write the expression:
After combining the logarithmic terms, the expression simplifies to:
[tex]\[ 3 \ln x + \ln 3 \][/tex]
3. Combine logarithms:
Now, we use the logarithm property that states: [tex]\(\ln a + \ln b = \ln(ab)\)[/tex]. Applying this rule, we combine [tex]\(3 \ln x\)[/tex] and [tex]\(\ln 3\)[/tex] into a single logarithm:
[tex]\[ 3 \ln x + \ln 3 = \ln (x^3) + \ln 3 = \ln (3 \cdot x^3) = \ln (3x^3) \][/tex]
Therefore, the expression [tex]\(4 \ln x + \ln 3 - \ln x\)[/tex] is equivalent to [tex]\(\ln \left(3 x^3\right)\)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{\ln \left(3 x^3\right)} \][/tex]
So the correct choice is:
[tex]\[ \boxed{\text{D}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.