At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To show that the volume of a sphere with radius [tex]\( r \)[/tex] is [tex]\( V = \frac{4}{3} \pi r^3 \)[/tex], we will use the method of integrating small volume elements.
### Step-by-Step Solution:
1. Surface Area of Sphere:
- The surface area [tex]\( A \)[/tex] of a sphere with radius [tex]\( r \)[/tex] is given by:
[tex]\[ A = 4 \pi r^2 \][/tex]
2. Small Volume Element:
- Imagine dividing the sphere into an infinite number of thin spherical shells, each with a very small thickness [tex]\( \Delta x \)[/tex].
- The radius of each small shell is [tex]\( x \)[/tex].
3. Volume of a Thin Spherical Shell:
- The volume [tex]\( \Delta V \)[/tex] of a thin spherical shell of radius [tex]\( x \)[/tex] and thickness [tex]\( \Delta x \)[/tex] is approximately the surface area at radius [tex]\( x \)[/tex] multiplied by the thickness.
- Thus, the volume [tex]\( \Delta V \)[/tex] of the shell is:
[tex]\[ \Delta V \approx 4 \pi x^2 \Delta x \][/tex]
4. Integration to Find the Total Volume:
- To find the total volume of the sphere, we sum the volumes of all the thin shells from [tex]\( x = 0 \)[/tex] to [tex]\( x = r \)[/tex].
- This summation is represented by the integral:
[tex]\[ V = \int_{0}^{r} 4 \pi x^2 \, dx \][/tex]
5. Evaluating the Integral:
- We need to evaluate the integral:
[tex]\[ \int_{0}^{r} 4 \pi x^2 \, dx \][/tex]
- First, factor out the constants:
[tex]\[ V = 4 \pi \int_{0}^{r} x^2 \, dx \][/tex]
6. Integral of [tex]\( x^2 \)[/tex]:
- Use the power rule for integration:
[tex]\[ \int x^2 \, dx = \frac{x^3}{3} \][/tex]
- Applying this to our integral, we get:
[tex]\[ V = 4 \pi \left[ \frac{x^3}{3} \right]_{0}^{r} \][/tex]
- Evaluate the definite integral:
[tex]\[ V = 4 \pi \left( \frac{r^3}{3} - \frac{0^3}{3} \right) \][/tex]
[tex]\[ V = 4 \pi \left( \frac{r^3}{3} \right) \][/tex]
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
### Conclusion:
Thus, the volume of a sphere with radius [tex]\( r \)[/tex] is indeed [tex]\( V = \frac{4}{3} \pi r^3 \)[/tex]. This derivation aligns perfectly with the formula for the volume of a sphere.
### Step-by-Step Solution:
1. Surface Area of Sphere:
- The surface area [tex]\( A \)[/tex] of a sphere with radius [tex]\( r \)[/tex] is given by:
[tex]\[ A = 4 \pi r^2 \][/tex]
2. Small Volume Element:
- Imagine dividing the sphere into an infinite number of thin spherical shells, each with a very small thickness [tex]\( \Delta x \)[/tex].
- The radius of each small shell is [tex]\( x \)[/tex].
3. Volume of a Thin Spherical Shell:
- The volume [tex]\( \Delta V \)[/tex] of a thin spherical shell of radius [tex]\( x \)[/tex] and thickness [tex]\( \Delta x \)[/tex] is approximately the surface area at radius [tex]\( x \)[/tex] multiplied by the thickness.
- Thus, the volume [tex]\( \Delta V \)[/tex] of the shell is:
[tex]\[ \Delta V \approx 4 \pi x^2 \Delta x \][/tex]
4. Integration to Find the Total Volume:
- To find the total volume of the sphere, we sum the volumes of all the thin shells from [tex]\( x = 0 \)[/tex] to [tex]\( x = r \)[/tex].
- This summation is represented by the integral:
[tex]\[ V = \int_{0}^{r} 4 \pi x^2 \, dx \][/tex]
5. Evaluating the Integral:
- We need to evaluate the integral:
[tex]\[ \int_{0}^{r} 4 \pi x^2 \, dx \][/tex]
- First, factor out the constants:
[tex]\[ V = 4 \pi \int_{0}^{r} x^2 \, dx \][/tex]
6. Integral of [tex]\( x^2 \)[/tex]:
- Use the power rule for integration:
[tex]\[ \int x^2 \, dx = \frac{x^3}{3} \][/tex]
- Applying this to our integral, we get:
[tex]\[ V = 4 \pi \left[ \frac{x^3}{3} \right]_{0}^{r} \][/tex]
- Evaluate the definite integral:
[tex]\[ V = 4 \pi \left( \frac{r^3}{3} - \frac{0^3}{3} \right) \][/tex]
[tex]\[ V = 4 \pi \left( \frac{r^3}{3} \right) \][/tex]
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
### Conclusion:
Thus, the volume of a sphere with radius [tex]\( r \)[/tex] is indeed [tex]\( V = \frac{4}{3} \pi r^3 \)[/tex]. This derivation aligns perfectly with the formula for the volume of a sphere.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.