Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the percentage error in the density [tex]\( \rho \)[/tex] of a piece of metal, given that [tex]\( m^4 = 375.32 \pm 0.01 \text{ g}^4 \)[/tex] and [tex]\( V = 136.41 \pm 0.01 \text{ cm}^3 \)[/tex], we can follow these steps:
### 1. Calculate the Mass [tex]\( m \)[/tex]
First, find the mass [tex]\( m \)[/tex] from [tex]\( m^4 \)[/tex]:
[tex]\[ m^4 = 375.32 \implies m = (375.32)^{1/4} \][/tex]
The numerical result is:
[tex]\[ m = 4.4014971695575245 \text{ g} \][/tex]
### 2. Determine the Error in [tex]\( m \)[/tex]
Using propagation of uncertainty, the error in [tex]\( m \)[/tex] ([tex]\(\Delta m\)[/tex]) can be found from the given error in [tex]\( m^4 \)[/tex]:
[tex]\[ \Delta m = \left| \frac{\partial m}{\partial m^4} \right| \Delta m^4 \][/tex]
Where:
[tex]\[ \left| \frac{\partial m}{\partial m^4} \right| = \left| \frac{1}{4} (m^4)^{-3/4} \right| = \frac{1}{4} (375.32)^{-3/4} \][/tex]
Plugging in the numbers, we get:
[tex]\[ \Delta m = 0.25 \times (375.32)^{-0.75} \times 0.01 = 2.9318296184306223\times 10^{-5} \text{ g} \][/tex]
### 3. Calculate the Density [tex]\( \rho \)[/tex]
The density [tex]\( \rho \)[/tex] is calculated using:
[tex]\[ \rho = \frac{m}{V} = \frac{4.4014971695575245 \text{ g}}{136.41 \text{ cm}^3} = 0.03226667524050674 \text{ g/cm}^3 \][/tex]
### 4. Determine the Error in [tex]\( \rho \)[/tex]
To find the error in [tex]\( \rho \)[/tex] ([tex]\(\Delta \rho\)[/tex]), we use the propagation of uncertainty formula for a quotient:
[tex]\[ \Delta \rho = \rho \sqrt{\left( \frac{\Delta m}{m} \right)^2 + \left( \frac{\Delta V}{V} \right)^2} \][/tex]
Where [tex]\(\Delta V = 0.01 \text{ cm}^3\)[/tex]. Plugging in the values:
[tex]\[ \Delta \rho = 0.03226667524050674 \sqrt{\left( \frac{2.9318296184306223\times 10^{-5}}{4.4014971695575245} \right)^2 + \left( \frac{0.01}{136.41} \right)^2} = 2.3751629707308275\times 10^{-6} \text{ g/cm}^3 \][/tex]
### 5. Calculate the Percentage Error in [tex]\( \rho \)[/tex]
Finally, the percentage error in [tex]\( \rho \)[/tex] is given by:
[tex]\[ \%\text{ error in } \rho = \left( \frac{\Delta \rho}{\rho} \right) \times 100 \][/tex]
Substituting the values we found:
[tex]\[ \%\text{ error in } \rho = \left( \frac{2.3751629707308275\times 10^{-6}}{0.03226667524050674} \right) \times 100 = 0.007361040308699392 \% \][/tex]
Thus, the percentage error in [tex]\( \rho \)[/tex] is approximately [tex]\( 0.00736\% \)[/tex].
### 1. Calculate the Mass [tex]\( m \)[/tex]
First, find the mass [tex]\( m \)[/tex] from [tex]\( m^4 \)[/tex]:
[tex]\[ m^4 = 375.32 \implies m = (375.32)^{1/4} \][/tex]
The numerical result is:
[tex]\[ m = 4.4014971695575245 \text{ g} \][/tex]
### 2. Determine the Error in [tex]\( m \)[/tex]
Using propagation of uncertainty, the error in [tex]\( m \)[/tex] ([tex]\(\Delta m\)[/tex]) can be found from the given error in [tex]\( m^4 \)[/tex]:
[tex]\[ \Delta m = \left| \frac{\partial m}{\partial m^4} \right| \Delta m^4 \][/tex]
Where:
[tex]\[ \left| \frac{\partial m}{\partial m^4} \right| = \left| \frac{1}{4} (m^4)^{-3/4} \right| = \frac{1}{4} (375.32)^{-3/4} \][/tex]
Plugging in the numbers, we get:
[tex]\[ \Delta m = 0.25 \times (375.32)^{-0.75} \times 0.01 = 2.9318296184306223\times 10^{-5} \text{ g} \][/tex]
### 3. Calculate the Density [tex]\( \rho \)[/tex]
The density [tex]\( \rho \)[/tex] is calculated using:
[tex]\[ \rho = \frac{m}{V} = \frac{4.4014971695575245 \text{ g}}{136.41 \text{ cm}^3} = 0.03226667524050674 \text{ g/cm}^3 \][/tex]
### 4. Determine the Error in [tex]\( \rho \)[/tex]
To find the error in [tex]\( \rho \)[/tex] ([tex]\(\Delta \rho\)[/tex]), we use the propagation of uncertainty formula for a quotient:
[tex]\[ \Delta \rho = \rho \sqrt{\left( \frac{\Delta m}{m} \right)^2 + \left( \frac{\Delta V}{V} \right)^2} \][/tex]
Where [tex]\(\Delta V = 0.01 \text{ cm}^3\)[/tex]. Plugging in the values:
[tex]\[ \Delta \rho = 0.03226667524050674 \sqrt{\left( \frac{2.9318296184306223\times 10^{-5}}{4.4014971695575245} \right)^2 + \left( \frac{0.01}{136.41} \right)^2} = 2.3751629707308275\times 10^{-6} \text{ g/cm}^3 \][/tex]
### 5. Calculate the Percentage Error in [tex]\( \rho \)[/tex]
Finally, the percentage error in [tex]\( \rho \)[/tex] is given by:
[tex]\[ \%\text{ error in } \rho = \left( \frac{\Delta \rho}{\rho} \right) \times 100 \][/tex]
Substituting the values we found:
[tex]\[ \%\text{ error in } \rho = \left( \frac{2.3751629707308275\times 10^{-6}}{0.03226667524050674} \right) \times 100 = 0.007361040308699392 \% \][/tex]
Thus, the percentage error in [tex]\( \rho \)[/tex] is approximately [tex]\( 0.00736\% \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.