At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the percentage error in the density [tex]\( \rho \)[/tex] of a piece of metal, given that [tex]\( m^4 = 375.32 \pm 0.01 \text{ g}^4 \)[/tex] and [tex]\( V = 136.41 \pm 0.01 \text{ cm}^3 \)[/tex], we can follow these steps:
### 1. Calculate the Mass [tex]\( m \)[/tex]
First, find the mass [tex]\( m \)[/tex] from [tex]\( m^4 \)[/tex]:
[tex]\[ m^4 = 375.32 \implies m = (375.32)^{1/4} \][/tex]
The numerical result is:
[tex]\[ m = 4.4014971695575245 \text{ g} \][/tex]
### 2. Determine the Error in [tex]\( m \)[/tex]
Using propagation of uncertainty, the error in [tex]\( m \)[/tex] ([tex]\(\Delta m\)[/tex]) can be found from the given error in [tex]\( m^4 \)[/tex]:
[tex]\[ \Delta m = \left| \frac{\partial m}{\partial m^4} \right| \Delta m^4 \][/tex]
Where:
[tex]\[ \left| \frac{\partial m}{\partial m^4} \right| = \left| \frac{1}{4} (m^4)^{-3/4} \right| = \frac{1}{4} (375.32)^{-3/4} \][/tex]
Plugging in the numbers, we get:
[tex]\[ \Delta m = 0.25 \times (375.32)^{-0.75} \times 0.01 = 2.9318296184306223\times 10^{-5} \text{ g} \][/tex]
### 3. Calculate the Density [tex]\( \rho \)[/tex]
The density [tex]\( \rho \)[/tex] is calculated using:
[tex]\[ \rho = \frac{m}{V} = \frac{4.4014971695575245 \text{ g}}{136.41 \text{ cm}^3} = 0.03226667524050674 \text{ g/cm}^3 \][/tex]
### 4. Determine the Error in [tex]\( \rho \)[/tex]
To find the error in [tex]\( \rho \)[/tex] ([tex]\(\Delta \rho\)[/tex]), we use the propagation of uncertainty formula for a quotient:
[tex]\[ \Delta \rho = \rho \sqrt{\left( \frac{\Delta m}{m} \right)^2 + \left( \frac{\Delta V}{V} \right)^2} \][/tex]
Where [tex]\(\Delta V = 0.01 \text{ cm}^3\)[/tex]. Plugging in the values:
[tex]\[ \Delta \rho = 0.03226667524050674 \sqrt{\left( \frac{2.9318296184306223\times 10^{-5}}{4.4014971695575245} \right)^2 + \left( \frac{0.01}{136.41} \right)^2} = 2.3751629707308275\times 10^{-6} \text{ g/cm}^3 \][/tex]
### 5. Calculate the Percentage Error in [tex]\( \rho \)[/tex]
Finally, the percentage error in [tex]\( \rho \)[/tex] is given by:
[tex]\[ \%\text{ error in } \rho = \left( \frac{\Delta \rho}{\rho} \right) \times 100 \][/tex]
Substituting the values we found:
[tex]\[ \%\text{ error in } \rho = \left( \frac{2.3751629707308275\times 10^{-6}}{0.03226667524050674} \right) \times 100 = 0.007361040308699392 \% \][/tex]
Thus, the percentage error in [tex]\( \rho \)[/tex] is approximately [tex]\( 0.00736\% \)[/tex].
### 1. Calculate the Mass [tex]\( m \)[/tex]
First, find the mass [tex]\( m \)[/tex] from [tex]\( m^4 \)[/tex]:
[tex]\[ m^4 = 375.32 \implies m = (375.32)^{1/4} \][/tex]
The numerical result is:
[tex]\[ m = 4.4014971695575245 \text{ g} \][/tex]
### 2. Determine the Error in [tex]\( m \)[/tex]
Using propagation of uncertainty, the error in [tex]\( m \)[/tex] ([tex]\(\Delta m\)[/tex]) can be found from the given error in [tex]\( m^4 \)[/tex]:
[tex]\[ \Delta m = \left| \frac{\partial m}{\partial m^4} \right| \Delta m^4 \][/tex]
Where:
[tex]\[ \left| \frac{\partial m}{\partial m^4} \right| = \left| \frac{1}{4} (m^4)^{-3/4} \right| = \frac{1}{4} (375.32)^{-3/4} \][/tex]
Plugging in the numbers, we get:
[tex]\[ \Delta m = 0.25 \times (375.32)^{-0.75} \times 0.01 = 2.9318296184306223\times 10^{-5} \text{ g} \][/tex]
### 3. Calculate the Density [tex]\( \rho \)[/tex]
The density [tex]\( \rho \)[/tex] is calculated using:
[tex]\[ \rho = \frac{m}{V} = \frac{4.4014971695575245 \text{ g}}{136.41 \text{ cm}^3} = 0.03226667524050674 \text{ g/cm}^3 \][/tex]
### 4. Determine the Error in [tex]\( \rho \)[/tex]
To find the error in [tex]\( \rho \)[/tex] ([tex]\(\Delta \rho\)[/tex]), we use the propagation of uncertainty formula for a quotient:
[tex]\[ \Delta \rho = \rho \sqrt{\left( \frac{\Delta m}{m} \right)^2 + \left( \frac{\Delta V}{V} \right)^2} \][/tex]
Where [tex]\(\Delta V = 0.01 \text{ cm}^3\)[/tex]. Plugging in the values:
[tex]\[ \Delta \rho = 0.03226667524050674 \sqrt{\left( \frac{2.9318296184306223\times 10^{-5}}{4.4014971695575245} \right)^2 + \left( \frac{0.01}{136.41} \right)^2} = 2.3751629707308275\times 10^{-6} \text{ g/cm}^3 \][/tex]
### 5. Calculate the Percentage Error in [tex]\( \rho \)[/tex]
Finally, the percentage error in [tex]\( \rho \)[/tex] is given by:
[tex]\[ \%\text{ error in } \rho = \left( \frac{\Delta \rho}{\rho} \right) \times 100 \][/tex]
Substituting the values we found:
[tex]\[ \%\text{ error in } \rho = \left( \frac{2.3751629707308275\times 10^{-6}}{0.03226667524050674} \right) \times 100 = 0.007361040308699392 \% \][/tex]
Thus, the percentage error in [tex]\( \rho \)[/tex] is approximately [tex]\( 0.00736\% \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.