Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's determine the number of diagonals in each of these polygons one by one.
### 1) Convex Quadrilateral
A quadrilateral has 4 sides (n = 4). To find the number of diagonals in a polygon, we can use the formula:
[tex]\[ \text{Number of diagonals} = \frac{n(n - 3)}{2} \][/tex]
For a convex quadrilateral:
[tex]\[ n = 4 \][/tex]
[tex]\[ \text{Number of diagonals} = \frac{4(4 - 3)}{2} = \frac{4 \times 1}{2} = \frac{4}{2} = 2 \][/tex]
So, a convex quadrilateral has 2 diagonals.
### 2) Regular Hexagon
A hexagon has 6 sides (n = 6). Using the same formula:
[tex]\[ \text{Number of diagonals} = \frac{n(n - 3)}{2} \][/tex]
For a regular hexagon:
[tex]\[ n = 6 \][/tex]
[tex]\[ \text{Number of diagonals} = \frac{6(6 - 3)}{2} = \frac{6 \times 3}{2} = \frac{18}{2} = 9 \][/tex]
So, a regular hexagon has 9 diagonals.
### 3) Triangle
A triangle has 3 sides (n = 3). Using the same formula:
[tex]\[ \text{Number of diagonals} = \frac{n(n - 3)}{2} \][/tex]
For a triangle:
[tex]\[ n = 3 \][/tex]
[tex]\[ \text{Number of diagonals} = \frac{3(3 - 3)}{2} = \frac{3 \times 0}{2} = \frac{0}{2} = 0 \][/tex]
So, a triangle has 0 diagonals.
### Summary
- A convex quadrilateral has 2 diagonals.
- A regular hexagon has 9 diagonals.
- A triangle has 0 diagonals.
### 1) Convex Quadrilateral
A quadrilateral has 4 sides (n = 4). To find the number of diagonals in a polygon, we can use the formula:
[tex]\[ \text{Number of diagonals} = \frac{n(n - 3)}{2} \][/tex]
For a convex quadrilateral:
[tex]\[ n = 4 \][/tex]
[tex]\[ \text{Number of diagonals} = \frac{4(4 - 3)}{2} = \frac{4 \times 1}{2} = \frac{4}{2} = 2 \][/tex]
So, a convex quadrilateral has 2 diagonals.
### 2) Regular Hexagon
A hexagon has 6 sides (n = 6). Using the same formula:
[tex]\[ \text{Number of diagonals} = \frac{n(n - 3)}{2} \][/tex]
For a regular hexagon:
[tex]\[ n = 6 \][/tex]
[tex]\[ \text{Number of diagonals} = \frac{6(6 - 3)}{2} = \frac{6 \times 3}{2} = \frac{18}{2} = 9 \][/tex]
So, a regular hexagon has 9 diagonals.
### 3) Triangle
A triangle has 3 sides (n = 3). Using the same formula:
[tex]\[ \text{Number of diagonals} = \frac{n(n - 3)}{2} \][/tex]
For a triangle:
[tex]\[ n = 3 \][/tex]
[tex]\[ \text{Number of diagonals} = \frac{3(3 - 3)}{2} = \frac{3 \times 0}{2} = \frac{0}{2} = 0 \][/tex]
So, a triangle has 0 diagonals.
### Summary
- A convex quadrilateral has 2 diagonals.
- A regular hexagon has 9 diagonals.
- A triangle has 0 diagonals.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.