Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
# Solving Linear Inequalities in Two Variables using the Graph Method
## Part A
### Inequalities:
1. [tex]\(y \geq -\frac{1}{2}x - 2\)[/tex]
2. [tex]\(y \leq x + 4\)[/tex]
3. [tex]\(x < 4\)[/tex]
### Steps to Solve:
1. Graph the first inequality [tex]\(y \geq -\frac{1}{2}x - 2\)[/tex]:
- Plot the line [tex]\(y = -\frac{1}{2}x - 2\)[/tex]. Since the inequality is [tex]\(\geq\)[/tex], shade the region above this line.
- Points to plot the line:
- When [tex]\(x = 0\)[/tex], [tex]\(y = -2\)[/tex].
- When [tex]\(x = 4\)[/tex], [tex]\(y = -\frac{1}{2}(4) - 2 = -4\)[/tex].
2. Graph the second inequality [tex]\(y \leq x + 4\)[/tex]:
- Plot the line [tex]\(y = x + 4\)[/tex]. Since the inequality is [tex]\(\leq\)[/tex], shade the region below this line.
- Points to plot the line:
- When [tex]\(x = 0\)[/tex], [tex]\(y = 4\)[/tex].
- When [tex]\(x = -4\)[/tex], [tex]\(y = 0\)[/tex].
3. Graph the third inequality [tex]\(x < 4\)[/tex]:
- Draw the vertical line [tex]\(x = 4\)[/tex]. Since the inequality is [tex]\(<\)[/tex], shade the region to the left of this line.
4. Find the intersection of the shaded regions:
- The solution to this system is the region where all three shaded areas overlap.
### Solution:
- The solution is the region that is:
- Above the line [tex]\(y = -\frac{1}{2}x - 2\)[/tex]
- Below the line [tex]\(y = x + 4\)[/tex]
- To the left of the line [tex]\(x = 4\)[/tex].
### Visual Representation:
- The region of overlap can be seen on the graph by shading the corresponding areas accordingly. The solution is the triangular region where the conditions [tex]\(x < 4\)[/tex], [tex]\(y \geq -\frac{1}{2}x - 2\)[/tex], and [tex]\(y \leq x + 4\)[/tex] are satisfied.
## Part B
### Inequalities:
1. [tex]\(y > -\frac{3}{2}x - 6\)[/tex]
2. [tex]\(y \geq \frac{3}{2}x\)[/tex]
3. [tex]\(y < 5\)[/tex]
### Steps to Solve:
1. Graph the first inequality [tex]\(y > -\frac{3}{2}x - 6\)[/tex]:
- Plot the line [tex]\(y = -\frac{3}{2}x - 6\)[/tex]. Since the inequality is [tex]\(>\)[/tex], shade the region above this line.
- Points to plot the line:
- When [tex]\(x = 0\)[/tex], [tex]\(y = -6\)[/tex].
- When [tex]\(x = -4\)[/tex], [tex]\(y = 0\)[/tex].
2. Graph the second inequality [tex]\(y \geq \frac{3}{2}x\)[/tex]:
- Plot the line [tex]\(y = \frac{3}{2}x\)[/tex]. Since the inequality is [tex]\(\geq\)[/tex], shade the region above this line.
- Points to plot the line:
- When [tex]\(x = 0\)[/tex], [tex]\(y = 0\)[/tex].
- When [tex]\(x = 4\)[/tex], [tex]\(y = 6\)[/tex].
3. Graph the third inequality [tex]\(y < 5\)[/tex]:
- Draw the horizontal line [tex]\(y = 5\)[/tex]. Since the inequality is [tex]\(<\)[/tex], shade the region below this line.
4. Find the intersection of the shaded regions:
- The solution to this system is the region where all three shaded areas overlap.
### Solution:
- The solution is the region that is:
- Above the line [tex]\(y = -\frac{3}{2}x - 6\)[/tex]
- Above the line [tex]\(y = \frac{3}{2}x\)[/tex]
- Below the line [tex]\(y = 5\)[/tex].
### Visual Representation:
- The region of overlap can be seen on the graph by shading the corresponding areas accordingly. The solution is the area bounded by [tex]\(y > -\frac{3}{2}x - 6\)[/tex], [tex]\(y \geq \frac{3}{2}x\)[/tex], and [tex]\(y < 5\)[/tex], forming a polygonal region.
In both parts, by plotting the lines and shading the appropriate regions, the solution to the system of inequalities is the area where all conditions are satisfied simultaneously. A graphing calculator or software can assist in visually verifying the solution.
## Part A
### Inequalities:
1. [tex]\(y \geq -\frac{1}{2}x - 2\)[/tex]
2. [tex]\(y \leq x + 4\)[/tex]
3. [tex]\(x < 4\)[/tex]
### Steps to Solve:
1. Graph the first inequality [tex]\(y \geq -\frac{1}{2}x - 2\)[/tex]:
- Plot the line [tex]\(y = -\frac{1}{2}x - 2\)[/tex]. Since the inequality is [tex]\(\geq\)[/tex], shade the region above this line.
- Points to plot the line:
- When [tex]\(x = 0\)[/tex], [tex]\(y = -2\)[/tex].
- When [tex]\(x = 4\)[/tex], [tex]\(y = -\frac{1}{2}(4) - 2 = -4\)[/tex].
2. Graph the second inequality [tex]\(y \leq x + 4\)[/tex]:
- Plot the line [tex]\(y = x + 4\)[/tex]. Since the inequality is [tex]\(\leq\)[/tex], shade the region below this line.
- Points to plot the line:
- When [tex]\(x = 0\)[/tex], [tex]\(y = 4\)[/tex].
- When [tex]\(x = -4\)[/tex], [tex]\(y = 0\)[/tex].
3. Graph the third inequality [tex]\(x < 4\)[/tex]:
- Draw the vertical line [tex]\(x = 4\)[/tex]. Since the inequality is [tex]\(<\)[/tex], shade the region to the left of this line.
4. Find the intersection of the shaded regions:
- The solution to this system is the region where all three shaded areas overlap.
### Solution:
- The solution is the region that is:
- Above the line [tex]\(y = -\frac{1}{2}x - 2\)[/tex]
- Below the line [tex]\(y = x + 4\)[/tex]
- To the left of the line [tex]\(x = 4\)[/tex].
### Visual Representation:
- The region of overlap can be seen on the graph by shading the corresponding areas accordingly. The solution is the triangular region where the conditions [tex]\(x < 4\)[/tex], [tex]\(y \geq -\frac{1}{2}x - 2\)[/tex], and [tex]\(y \leq x + 4\)[/tex] are satisfied.
## Part B
### Inequalities:
1. [tex]\(y > -\frac{3}{2}x - 6\)[/tex]
2. [tex]\(y \geq \frac{3}{2}x\)[/tex]
3. [tex]\(y < 5\)[/tex]
### Steps to Solve:
1. Graph the first inequality [tex]\(y > -\frac{3}{2}x - 6\)[/tex]:
- Plot the line [tex]\(y = -\frac{3}{2}x - 6\)[/tex]. Since the inequality is [tex]\(>\)[/tex], shade the region above this line.
- Points to plot the line:
- When [tex]\(x = 0\)[/tex], [tex]\(y = -6\)[/tex].
- When [tex]\(x = -4\)[/tex], [tex]\(y = 0\)[/tex].
2. Graph the second inequality [tex]\(y \geq \frac{3}{2}x\)[/tex]:
- Plot the line [tex]\(y = \frac{3}{2}x\)[/tex]. Since the inequality is [tex]\(\geq\)[/tex], shade the region above this line.
- Points to plot the line:
- When [tex]\(x = 0\)[/tex], [tex]\(y = 0\)[/tex].
- When [tex]\(x = 4\)[/tex], [tex]\(y = 6\)[/tex].
3. Graph the third inequality [tex]\(y < 5\)[/tex]:
- Draw the horizontal line [tex]\(y = 5\)[/tex]. Since the inequality is [tex]\(<\)[/tex], shade the region below this line.
4. Find the intersection of the shaded regions:
- The solution to this system is the region where all three shaded areas overlap.
### Solution:
- The solution is the region that is:
- Above the line [tex]\(y = -\frac{3}{2}x - 6\)[/tex]
- Above the line [tex]\(y = \frac{3}{2}x\)[/tex]
- Below the line [tex]\(y = 5\)[/tex].
### Visual Representation:
- The region of overlap can be seen on the graph by shading the corresponding areas accordingly. The solution is the area bounded by [tex]\(y > -\frac{3}{2}x - 6\)[/tex], [tex]\(y \geq \frac{3}{2}x\)[/tex], and [tex]\(y < 5\)[/tex], forming a polygonal region.
In both parts, by plotting the lines and shading the appropriate regions, the solution to the system of inequalities is the area where all conditions are satisfied simultaneously. A graphing calculator or software can assist in visually verifying the solution.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.