Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the equation [tex]\(\frac{x}{x-2}+\frac{x-1}{x+1}=-1\)[/tex], follow these steps:
1. Identify a Common Denominator:
The denominators are [tex]\(x-2\)[/tex] and [tex]\(x+1\)[/tex]. The common denominator will be [tex]\((x-2)(x+1)\)[/tex].
2. Rewrite the Equation with a Common Denominator:
Multiply both terms on the left-hand side by [tex]\((x+1)(x-2)\)[/tex]:
[tex]\[ \frac{x(x+1) + (x-1)(x-2)}{(x-2)(x+1)} = -1 \][/tex]
3. Simplify the Numerator:
Expand the terms in the numerator:
[tex]\[ x(x+1) + (x-1)(x-2) \][/tex]
[tex]\[ x^2 + x + (x^2 - 2x - x + 2) \][/tex]
Combine like terms:
[tex]\[ x^2 + x + x^2 - 3x + 2 = 2x^2 - 2x + 2 \][/tex]
4. Rewrite the Equation:
Substitute back into the equation:
[tex]\[ \frac{2x^2 - 2x + 2}{(x-2)(x+1)} = -1 \][/tex]
5. Eliminate the Denominator:
Multiply both sides by [tex]\((x-2)(x+1)\)[/tex] to get rid of the denominator:
[tex]\[ 2x^2 - 2x + 2 = - (x-2)(x+1) \][/tex]
6. Expand and Simplify:
Expand [tex]\(-(x-2)(x+1)\)[/tex]:
[tex]\[ - (x^2 - x + 2) = -x^2 + x - 2 \][/tex]
The equation becomes:
[tex]\[ 2x^2 - 2x + 2 = -x^2 + x - 2 \][/tex]
7. Combine Like Terms:
Move all terms to one side of the equation:
[tex]\[ 2x^2 + x^2 - 2x - x + 2 + 2 = 0 \][/tex]
This simplifies to:
[tex]\[ 3x^2 - 3x + 4 = 0 \][/tex]
8. Solve the Quadratic Equation:
Use the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 3\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = 4\)[/tex]:
Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac = (-3)^2 - 4 \cdot 3 \cdot 4 = 9 - 48 = -39 \][/tex]
9. Analyze the Discriminant:
Since the discriminant [tex]\(\Delta\)[/tex] is negative ([tex]\(-39\)[/tex]), it indicates that there are no real solutions to the quadratic equation [tex]\(3x^2 - 3x + 4 = 0\)[/tex].
Thus, the final answer is that there are no real solutions to the given equation [tex]\(\frac{x}{x-2}+\frac{x-1}{x+1}=-1\)[/tex].
1. Identify a Common Denominator:
The denominators are [tex]\(x-2\)[/tex] and [tex]\(x+1\)[/tex]. The common denominator will be [tex]\((x-2)(x+1)\)[/tex].
2. Rewrite the Equation with a Common Denominator:
Multiply both terms on the left-hand side by [tex]\((x+1)(x-2)\)[/tex]:
[tex]\[ \frac{x(x+1) + (x-1)(x-2)}{(x-2)(x+1)} = -1 \][/tex]
3. Simplify the Numerator:
Expand the terms in the numerator:
[tex]\[ x(x+1) + (x-1)(x-2) \][/tex]
[tex]\[ x^2 + x + (x^2 - 2x - x + 2) \][/tex]
Combine like terms:
[tex]\[ x^2 + x + x^2 - 3x + 2 = 2x^2 - 2x + 2 \][/tex]
4. Rewrite the Equation:
Substitute back into the equation:
[tex]\[ \frac{2x^2 - 2x + 2}{(x-2)(x+1)} = -1 \][/tex]
5. Eliminate the Denominator:
Multiply both sides by [tex]\((x-2)(x+1)\)[/tex] to get rid of the denominator:
[tex]\[ 2x^2 - 2x + 2 = - (x-2)(x+1) \][/tex]
6. Expand and Simplify:
Expand [tex]\(-(x-2)(x+1)\)[/tex]:
[tex]\[ - (x^2 - x + 2) = -x^2 + x - 2 \][/tex]
The equation becomes:
[tex]\[ 2x^2 - 2x + 2 = -x^2 + x - 2 \][/tex]
7. Combine Like Terms:
Move all terms to one side of the equation:
[tex]\[ 2x^2 + x^2 - 2x - x + 2 + 2 = 0 \][/tex]
This simplifies to:
[tex]\[ 3x^2 - 3x + 4 = 0 \][/tex]
8. Solve the Quadratic Equation:
Use the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 3\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = 4\)[/tex]:
Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac = (-3)^2 - 4 \cdot 3 \cdot 4 = 9 - 48 = -39 \][/tex]
9. Analyze the Discriminant:
Since the discriminant [tex]\(\Delta\)[/tex] is negative ([tex]\(-39\)[/tex]), it indicates that there are no real solutions to the quadratic equation [tex]\(3x^2 - 3x + 4 = 0\)[/tex].
Thus, the final answer is that there are no real solutions to the given equation [tex]\(\frac{x}{x-2}+\frac{x-1}{x+1}=-1\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.