Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the slowest and rate-determining step in the given reaction mechanism, we consider the following points:
1. The overall reaction combines [tex]\( \text{NO}_2 \)[/tex] and [tex]\( \text{CO} \)[/tex] to produce [tex]\( \text{NO} \)[/tex] and [tex]\( \text{CO}_2 \)[/tex].
2. The reaction mechanism proposed consists of two steps:
[tex]\[ \begin{array}{l} \text { Step 1: } \text{NO}_2 + \text{NO}_2 \rightarrow \text{NO}_3 + \text{NO} \\ \text { Step 2: } \text{NO}_3 + \text{CO} \rightarrow \text{NO}_2 + \text{CO}_2 \end{array} \][/tex]
3. Experimental findings have shown that increasing the concentration of [tex]\( \text{CO} \)[/tex] has no effect on the rate of reaction, while increasing the concentration of [tex]\( \text{NO}_2 \)[/tex] increases the rate of the reaction.
Given these points, we can deduce the following:
- Since increasing the concentration of [tex]\( \text{CO} \)[/tex] does not affect the rate of the reaction, step 2 involving [tex]\( \text{CO} \)[/tex] is not the rate-determining step. This implies that step 2 is relatively fast.
- Conversely, since increasing the concentration of [tex]\( \text{NO}_2 \)[/tex] increases the reaction rate, it suggests that [tex]\( \text{NO}_2 \)[/tex] directly influences the rate-determining step. This information points towards step 1 as the slower step which involves [tex]\( \text{NO}_2 \)[/tex].
Therefore, we can conclude that the slowest step is step 1, and it is called the rate-determining step.
In summary:
The slowest step is 1, and it is called the rate-determining step.
1. The overall reaction combines [tex]\( \text{NO}_2 \)[/tex] and [tex]\( \text{CO} \)[/tex] to produce [tex]\( \text{NO} \)[/tex] and [tex]\( \text{CO}_2 \)[/tex].
2. The reaction mechanism proposed consists of two steps:
[tex]\[ \begin{array}{l} \text { Step 1: } \text{NO}_2 + \text{NO}_2 \rightarrow \text{NO}_3 + \text{NO} \\ \text { Step 2: } \text{NO}_3 + \text{CO} \rightarrow \text{NO}_2 + \text{CO}_2 \end{array} \][/tex]
3. Experimental findings have shown that increasing the concentration of [tex]\( \text{CO} \)[/tex] has no effect on the rate of reaction, while increasing the concentration of [tex]\( \text{NO}_2 \)[/tex] increases the rate of the reaction.
Given these points, we can deduce the following:
- Since increasing the concentration of [tex]\( \text{CO} \)[/tex] does not affect the rate of the reaction, step 2 involving [tex]\( \text{CO} \)[/tex] is not the rate-determining step. This implies that step 2 is relatively fast.
- Conversely, since increasing the concentration of [tex]\( \text{NO}_2 \)[/tex] increases the reaction rate, it suggests that [tex]\( \text{NO}_2 \)[/tex] directly influences the rate-determining step. This information points towards step 1 as the slower step which involves [tex]\( \text{NO}_2 \)[/tex].
Therefore, we can conclude that the slowest step is step 1, and it is called the rate-determining step.
In summary:
The slowest step is 1, and it is called the rate-determining step.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.