Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the slowest and rate-determining step in the given reaction mechanism, we consider the following points:
1. The overall reaction combines [tex]\( \text{NO}_2 \)[/tex] and [tex]\( \text{CO} \)[/tex] to produce [tex]\( \text{NO} \)[/tex] and [tex]\( \text{CO}_2 \)[/tex].
2. The reaction mechanism proposed consists of two steps:
[tex]\[ \begin{array}{l} \text { Step 1: } \text{NO}_2 + \text{NO}_2 \rightarrow \text{NO}_3 + \text{NO} \\ \text { Step 2: } \text{NO}_3 + \text{CO} \rightarrow \text{NO}_2 + \text{CO}_2 \end{array} \][/tex]
3. Experimental findings have shown that increasing the concentration of [tex]\( \text{CO} \)[/tex] has no effect on the rate of reaction, while increasing the concentration of [tex]\( \text{NO}_2 \)[/tex] increases the rate of the reaction.
Given these points, we can deduce the following:
- Since increasing the concentration of [tex]\( \text{CO} \)[/tex] does not affect the rate of the reaction, step 2 involving [tex]\( \text{CO} \)[/tex] is not the rate-determining step. This implies that step 2 is relatively fast.
- Conversely, since increasing the concentration of [tex]\( \text{NO}_2 \)[/tex] increases the reaction rate, it suggests that [tex]\( \text{NO}_2 \)[/tex] directly influences the rate-determining step. This information points towards step 1 as the slower step which involves [tex]\( \text{NO}_2 \)[/tex].
Therefore, we can conclude that the slowest step is step 1, and it is called the rate-determining step.
In summary:
The slowest step is 1, and it is called the rate-determining step.
1. The overall reaction combines [tex]\( \text{NO}_2 \)[/tex] and [tex]\( \text{CO} \)[/tex] to produce [tex]\( \text{NO} \)[/tex] and [tex]\( \text{CO}_2 \)[/tex].
2. The reaction mechanism proposed consists of two steps:
[tex]\[ \begin{array}{l} \text { Step 1: } \text{NO}_2 + \text{NO}_2 \rightarrow \text{NO}_3 + \text{NO} \\ \text { Step 2: } \text{NO}_3 + \text{CO} \rightarrow \text{NO}_2 + \text{CO}_2 \end{array} \][/tex]
3. Experimental findings have shown that increasing the concentration of [tex]\( \text{CO} \)[/tex] has no effect on the rate of reaction, while increasing the concentration of [tex]\( \text{NO}_2 \)[/tex] increases the rate of the reaction.
Given these points, we can deduce the following:
- Since increasing the concentration of [tex]\( \text{CO} \)[/tex] does not affect the rate of the reaction, step 2 involving [tex]\( \text{CO} \)[/tex] is not the rate-determining step. This implies that step 2 is relatively fast.
- Conversely, since increasing the concentration of [tex]\( \text{NO}_2 \)[/tex] increases the reaction rate, it suggests that [tex]\( \text{NO}_2 \)[/tex] directly influences the rate-determining step. This information points towards step 1 as the slower step which involves [tex]\( \text{NO}_2 \)[/tex].
Therefore, we can conclude that the slowest step is step 1, and it is called the rate-determining step.
In summary:
The slowest step is 1, and it is called the rate-determining step.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.