At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's solve this step-by-step.
### Step 1: Understanding the Initial Conditions
1. Object Distance (Initial): The object is placed at a distance [tex]\( u_i = 10 \, \text{ur} \)[/tex] from the mirror.
2. Initial Image Magnification: The mirror produces a virtual image that is double the size of the object. Therefore, the magnification [tex]\( m_i = 2 \)[/tex].
### Step 2: Finding the Initial Image Distance and Focal Length
For a concave mirror, the magnification [tex]\( m \)[/tex] is given by:
[tex]\[ m = -\frac{v}{u} \][/tex]
Using the initial magnification and object distance:
[tex]\[ 2 = -\frac{v_i}{10} \][/tex]
[tex]\[ v_i = -2 \cdot 10 \][/tex]
[tex]\[ v_i = -20 \, \text{ur} \][/tex]
This indicates that the initial image distance [tex]\( v_i \)[/tex] for the virtual image is [tex]\( -20 \, \text{ur} \)[/tex] (negative value because the image is virtual).
Now, we use the mirror formula:
[tex]\[ \frac{1}{f} = \frac{1}{v} + \frac{1}{u} \][/tex]
Substitute the values for the initial setup:
[tex]\[ \frac{1}{f} = \frac{1}{-20} + \frac{1}{10} \][/tex]
[tex]\[ \frac{1}{f} = -\frac{1}{20} + \frac{1}{10} \][/tex]
[tex]\[ \frac{1}{f} = -\frac{1}{20} + \frac{2}{20} \][/tex]
[tex]\[ \frac{1}{f} = \frac{1}{20} \][/tex]
[tex]\[ f = 20 \, \text{ur} \][/tex]
### Step 3: Finding the Required Conditions for the Real Image
3. Required Image Magnification: The new magnification for the real image is [tex]\( \frac{7}{3} \approx 2.33333 \)[/tex].
From the magnification formula, for the real image:
[tex]\[ m_r = -\frac{v_r}{u_r} \][/tex]
[tex]\[ 2.33333 = -\frac{v_r}{u_i} \][/tex]
[tex]\[ v_r = -2.33333 \cdot u_i \][/tex]
[tex]\[ v_r = -2.33333 \cdot 10 \][/tex]
[tex]\[ v_r \approx -23.3333 \, \text{ur} \][/tex]
### Step 4: Finding the New Object Distance
Using the mirror formula again with the required image distance [tex]\( v_r \)[/tex]:
[tex]\[ \frac{1}{f} = \frac{1}{v_r} + \frac{1}{u_r} \][/tex]
[tex]\[ \frac{1}{20} = \frac{1}{-23.3333} + \frac{1}{u_r} \][/tex]
Solving for [tex]\( u_r \)[/tex]:
[tex]\[ \frac{1}{u_r} = \frac{1}{20} - \frac{1}{-23.3333} \][/tex]
[tex]\[ \frac{1}{u_r} = \frac{1}{20} + \frac{1}{23.3333} \][/tex]
[tex]\[ \frac{1}{u_r} \approx 0.05 + 0.04283 \][/tex]
[tex]\[ \frac{1}{u_r} \approx 0.09283 \][/tex]
[tex]\[ u_r \approx 10.769 \, \text{ur} \][/tex]
### Summary
1. Initial Image Distance: The initial image distance for the virtual image is [tex]\( v_i = -20 \, \text{ur} \)[/tex].
2. Focal Length: The focal length of the mirror is [tex]\( f = 20 \, \text{ur} \)[/tex].
3. Required Image Distance: The required image distance for the real image is [tex]\( v_r \approx -23.3333 \, \text{ur} \)[/tex].
4. Required Object Distance: The object should be placed [tex]\( u_r \approx 10.769 \, \text{ur} \)[/tex].
This means that to achieve a real image that is [tex]\( \frac{7}{3} \approx 2.33333 \)[/tex] times the size of the object, the object should be placed approximately [tex]\( 10.769 \, \text{ur} \)[/tex] from the concave mirror.
### Step 1: Understanding the Initial Conditions
1. Object Distance (Initial): The object is placed at a distance [tex]\( u_i = 10 \, \text{ur} \)[/tex] from the mirror.
2. Initial Image Magnification: The mirror produces a virtual image that is double the size of the object. Therefore, the magnification [tex]\( m_i = 2 \)[/tex].
### Step 2: Finding the Initial Image Distance and Focal Length
For a concave mirror, the magnification [tex]\( m \)[/tex] is given by:
[tex]\[ m = -\frac{v}{u} \][/tex]
Using the initial magnification and object distance:
[tex]\[ 2 = -\frac{v_i}{10} \][/tex]
[tex]\[ v_i = -2 \cdot 10 \][/tex]
[tex]\[ v_i = -20 \, \text{ur} \][/tex]
This indicates that the initial image distance [tex]\( v_i \)[/tex] for the virtual image is [tex]\( -20 \, \text{ur} \)[/tex] (negative value because the image is virtual).
Now, we use the mirror formula:
[tex]\[ \frac{1}{f} = \frac{1}{v} + \frac{1}{u} \][/tex]
Substitute the values for the initial setup:
[tex]\[ \frac{1}{f} = \frac{1}{-20} + \frac{1}{10} \][/tex]
[tex]\[ \frac{1}{f} = -\frac{1}{20} + \frac{1}{10} \][/tex]
[tex]\[ \frac{1}{f} = -\frac{1}{20} + \frac{2}{20} \][/tex]
[tex]\[ \frac{1}{f} = \frac{1}{20} \][/tex]
[tex]\[ f = 20 \, \text{ur} \][/tex]
### Step 3: Finding the Required Conditions for the Real Image
3. Required Image Magnification: The new magnification for the real image is [tex]\( \frac{7}{3} \approx 2.33333 \)[/tex].
From the magnification formula, for the real image:
[tex]\[ m_r = -\frac{v_r}{u_r} \][/tex]
[tex]\[ 2.33333 = -\frac{v_r}{u_i} \][/tex]
[tex]\[ v_r = -2.33333 \cdot u_i \][/tex]
[tex]\[ v_r = -2.33333 \cdot 10 \][/tex]
[tex]\[ v_r \approx -23.3333 \, \text{ur} \][/tex]
### Step 4: Finding the New Object Distance
Using the mirror formula again with the required image distance [tex]\( v_r \)[/tex]:
[tex]\[ \frac{1}{f} = \frac{1}{v_r} + \frac{1}{u_r} \][/tex]
[tex]\[ \frac{1}{20} = \frac{1}{-23.3333} + \frac{1}{u_r} \][/tex]
Solving for [tex]\( u_r \)[/tex]:
[tex]\[ \frac{1}{u_r} = \frac{1}{20} - \frac{1}{-23.3333} \][/tex]
[tex]\[ \frac{1}{u_r} = \frac{1}{20} + \frac{1}{23.3333} \][/tex]
[tex]\[ \frac{1}{u_r} \approx 0.05 + 0.04283 \][/tex]
[tex]\[ \frac{1}{u_r} \approx 0.09283 \][/tex]
[tex]\[ u_r \approx 10.769 \, \text{ur} \][/tex]
### Summary
1. Initial Image Distance: The initial image distance for the virtual image is [tex]\( v_i = -20 \, \text{ur} \)[/tex].
2. Focal Length: The focal length of the mirror is [tex]\( f = 20 \, \text{ur} \)[/tex].
3. Required Image Distance: The required image distance for the real image is [tex]\( v_r \approx -23.3333 \, \text{ur} \)[/tex].
4. Required Object Distance: The object should be placed [tex]\( u_r \approx 10.769 \, \text{ur} \)[/tex].
This means that to achieve a real image that is [tex]\( \frac{7}{3} \approx 2.33333 \)[/tex] times the size of the object, the object should be placed approximately [tex]\( 10.769 \, \text{ur} \)[/tex] from the concave mirror.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.