Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve this step-by-step.
### Step 1: Understanding the Initial Conditions
1. Object Distance (Initial): The object is placed at a distance [tex]\( u_i = 10 \, \text{ur} \)[/tex] from the mirror.
2. Initial Image Magnification: The mirror produces a virtual image that is double the size of the object. Therefore, the magnification [tex]\( m_i = 2 \)[/tex].
### Step 2: Finding the Initial Image Distance and Focal Length
For a concave mirror, the magnification [tex]\( m \)[/tex] is given by:
[tex]\[ m = -\frac{v}{u} \][/tex]
Using the initial magnification and object distance:
[tex]\[ 2 = -\frac{v_i}{10} \][/tex]
[tex]\[ v_i = -2 \cdot 10 \][/tex]
[tex]\[ v_i = -20 \, \text{ur} \][/tex]
This indicates that the initial image distance [tex]\( v_i \)[/tex] for the virtual image is [tex]\( -20 \, \text{ur} \)[/tex] (negative value because the image is virtual).
Now, we use the mirror formula:
[tex]\[ \frac{1}{f} = \frac{1}{v} + \frac{1}{u} \][/tex]
Substitute the values for the initial setup:
[tex]\[ \frac{1}{f} = \frac{1}{-20} + \frac{1}{10} \][/tex]
[tex]\[ \frac{1}{f} = -\frac{1}{20} + \frac{1}{10} \][/tex]
[tex]\[ \frac{1}{f} = -\frac{1}{20} + \frac{2}{20} \][/tex]
[tex]\[ \frac{1}{f} = \frac{1}{20} \][/tex]
[tex]\[ f = 20 \, \text{ur} \][/tex]
### Step 3: Finding the Required Conditions for the Real Image
3. Required Image Magnification: The new magnification for the real image is [tex]\( \frac{7}{3} \approx 2.33333 \)[/tex].
From the magnification formula, for the real image:
[tex]\[ m_r = -\frac{v_r}{u_r} \][/tex]
[tex]\[ 2.33333 = -\frac{v_r}{u_i} \][/tex]
[tex]\[ v_r = -2.33333 \cdot u_i \][/tex]
[tex]\[ v_r = -2.33333 \cdot 10 \][/tex]
[tex]\[ v_r \approx -23.3333 \, \text{ur} \][/tex]
### Step 4: Finding the New Object Distance
Using the mirror formula again with the required image distance [tex]\( v_r \)[/tex]:
[tex]\[ \frac{1}{f} = \frac{1}{v_r} + \frac{1}{u_r} \][/tex]
[tex]\[ \frac{1}{20} = \frac{1}{-23.3333} + \frac{1}{u_r} \][/tex]
Solving for [tex]\( u_r \)[/tex]:
[tex]\[ \frac{1}{u_r} = \frac{1}{20} - \frac{1}{-23.3333} \][/tex]
[tex]\[ \frac{1}{u_r} = \frac{1}{20} + \frac{1}{23.3333} \][/tex]
[tex]\[ \frac{1}{u_r} \approx 0.05 + 0.04283 \][/tex]
[tex]\[ \frac{1}{u_r} \approx 0.09283 \][/tex]
[tex]\[ u_r \approx 10.769 \, \text{ur} \][/tex]
### Summary
1. Initial Image Distance: The initial image distance for the virtual image is [tex]\( v_i = -20 \, \text{ur} \)[/tex].
2. Focal Length: The focal length of the mirror is [tex]\( f = 20 \, \text{ur} \)[/tex].
3. Required Image Distance: The required image distance for the real image is [tex]\( v_r \approx -23.3333 \, \text{ur} \)[/tex].
4. Required Object Distance: The object should be placed [tex]\( u_r \approx 10.769 \, \text{ur} \)[/tex].
This means that to achieve a real image that is [tex]\( \frac{7}{3} \approx 2.33333 \)[/tex] times the size of the object, the object should be placed approximately [tex]\( 10.769 \, \text{ur} \)[/tex] from the concave mirror.
### Step 1: Understanding the Initial Conditions
1. Object Distance (Initial): The object is placed at a distance [tex]\( u_i = 10 \, \text{ur} \)[/tex] from the mirror.
2. Initial Image Magnification: The mirror produces a virtual image that is double the size of the object. Therefore, the magnification [tex]\( m_i = 2 \)[/tex].
### Step 2: Finding the Initial Image Distance and Focal Length
For a concave mirror, the magnification [tex]\( m \)[/tex] is given by:
[tex]\[ m = -\frac{v}{u} \][/tex]
Using the initial magnification and object distance:
[tex]\[ 2 = -\frac{v_i}{10} \][/tex]
[tex]\[ v_i = -2 \cdot 10 \][/tex]
[tex]\[ v_i = -20 \, \text{ur} \][/tex]
This indicates that the initial image distance [tex]\( v_i \)[/tex] for the virtual image is [tex]\( -20 \, \text{ur} \)[/tex] (negative value because the image is virtual).
Now, we use the mirror formula:
[tex]\[ \frac{1}{f} = \frac{1}{v} + \frac{1}{u} \][/tex]
Substitute the values for the initial setup:
[tex]\[ \frac{1}{f} = \frac{1}{-20} + \frac{1}{10} \][/tex]
[tex]\[ \frac{1}{f} = -\frac{1}{20} + \frac{1}{10} \][/tex]
[tex]\[ \frac{1}{f} = -\frac{1}{20} + \frac{2}{20} \][/tex]
[tex]\[ \frac{1}{f} = \frac{1}{20} \][/tex]
[tex]\[ f = 20 \, \text{ur} \][/tex]
### Step 3: Finding the Required Conditions for the Real Image
3. Required Image Magnification: The new magnification for the real image is [tex]\( \frac{7}{3} \approx 2.33333 \)[/tex].
From the magnification formula, for the real image:
[tex]\[ m_r = -\frac{v_r}{u_r} \][/tex]
[tex]\[ 2.33333 = -\frac{v_r}{u_i} \][/tex]
[tex]\[ v_r = -2.33333 \cdot u_i \][/tex]
[tex]\[ v_r = -2.33333 \cdot 10 \][/tex]
[tex]\[ v_r \approx -23.3333 \, \text{ur} \][/tex]
### Step 4: Finding the New Object Distance
Using the mirror formula again with the required image distance [tex]\( v_r \)[/tex]:
[tex]\[ \frac{1}{f} = \frac{1}{v_r} + \frac{1}{u_r} \][/tex]
[tex]\[ \frac{1}{20} = \frac{1}{-23.3333} + \frac{1}{u_r} \][/tex]
Solving for [tex]\( u_r \)[/tex]:
[tex]\[ \frac{1}{u_r} = \frac{1}{20} - \frac{1}{-23.3333} \][/tex]
[tex]\[ \frac{1}{u_r} = \frac{1}{20} + \frac{1}{23.3333} \][/tex]
[tex]\[ \frac{1}{u_r} \approx 0.05 + 0.04283 \][/tex]
[tex]\[ \frac{1}{u_r} \approx 0.09283 \][/tex]
[tex]\[ u_r \approx 10.769 \, \text{ur} \][/tex]
### Summary
1. Initial Image Distance: The initial image distance for the virtual image is [tex]\( v_i = -20 \, \text{ur} \)[/tex].
2. Focal Length: The focal length of the mirror is [tex]\( f = 20 \, \text{ur} \)[/tex].
3. Required Image Distance: The required image distance for the real image is [tex]\( v_r \approx -23.3333 \, \text{ur} \)[/tex].
4. Required Object Distance: The object should be placed [tex]\( u_r \approx 10.769 \, \text{ur} \)[/tex].
This means that to achieve a real image that is [tex]\( \frac{7}{3} \approx 2.33333 \)[/tex] times the size of the object, the object should be placed approximately [tex]\( 10.769 \, \text{ur} \)[/tex] from the concave mirror.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.