At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

The density of gold is [tex][tex]$19.3 \, g/cm^3$[/tex][/tex]. What is the volume of a [tex][tex]$13 \, g$[/tex][/tex] gold nugget? (Density: [tex]D=\frac{m}{v}[/tex])

A. [tex]0.25 \, cm^3[/tex]
B. [tex]0.67 \, cm^3[/tex]
C. [tex]1.48 \, cm^3[/tex]
D. [tex]2.50 \, cm^3[/tex]


Sagot :

To determine the volume of a gold nugget with a mass of 13 grams and a density of [tex]\(19.3 \, \text{g/cm}^3\)[/tex], we can use the formula for density, which is:

[tex]\[ D = \frac{m}{v} \][/tex]

where:
- [tex]\(D\)[/tex] is the density,
- [tex]\(m\)[/tex] is the mass,
- [tex]\(v\)[/tex] is the volume.

We need to rearrange the formula to solve for the volume [tex]\(v\)[/tex]. This can be done by isolating [tex]\(v\)[/tex]:

[tex]\[ v = \frac{m}{D} \][/tex]

Given:
- [tex]\(m = 13 \, \text{g}\)[/tex],
- [tex]\(D = 19.3 \, \text{g/cm}^3\)[/tex],

we substitute these values into the equation:

[tex]\[ v = \frac{13 \, \text{g}}{19.3 \, \text{g/cm}^3} \][/tex]

By performing the division, we get:

[tex]\[ v = 0.6735751295336787 \, \text{cm}^3 \][/tex]

Hence the volume of the 13-gram gold nugget is approximately [tex]\(0.67 \, \text{cm}^3\)[/tex] when rounded to two decimal places, which matches one of the provided options.

Answer: The volume of the 13-gram gold nugget is [tex]\(0.67 \, \text{cm}^3\)[/tex].