Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's review the solution step-by-step to determine its correctness.
### Step-by-Step Review:
1. Initial Equation:
[tex]\[ 9x + 2 = 8x^2 + 6x \][/tex]
2. Rearrange into Standard Form:
Subtract [tex]\(9x + 2\)[/tex] from both sides:
[tex]\[ 0 = 8x^2 + 6x - 9x - 2 \][/tex]
Simplify:
[tex]\[ 0 = 8x^2 - 3x - 2 \][/tex]
Rearrange to match standard quadratic form [tex]\(Ax^2 + Bx + C = 0\)[/tex]:
[tex]\[ -8x^2 + 3x + 2 = 0 \][/tex]
3. Identify Coefficients:
For the equation [tex]\(-8x^2 + 3x + 2 = 0\)[/tex], the coefficients are:
[tex]\[ A = -8, \quad B = 3, \quad C = 2 \][/tex]
4. Calculate the Discriminant:
The discriminant [tex]\(D\)[/tex] is given by the formula [tex]\(D = B^2 - 4AC\)[/tex]:
[tex]\[ D = 3^2 - 4(-8)(2) \][/tex]
Calculate the terms:
[tex]\[ D = 9 - (-64) \][/tex]
Simplify:
[tex]\[ D = 9 + 64 = 73 \][/tex]
5. Review the Provided Solution:
Let's look at the discriminant step in the provided solution:
[tex]\[ x = \frac{-3 \pm \sqrt{9 - (64)}}{-16} \][/tex]
This incorrectly sets the discriminant to:
[tex]\[ 9 - 64 = -55 \][/tex]
Then it states:
[tex]\[ x = \frac{-3 \pm \sqrt{-55i}}{-16} \text{,} \][/tex]
which is incorrect because the discriminant calculation steps should be:
[tex]\[ x = \frac{-3 \pm \sqrt{9 + 64}}{-16} = \frac{-3 \pm \sqrt{73}}{-16} \][/tex]
### Final Roots Calculation:
With the corrected discriminant [tex]\(D = 73\)[/tex]:
[tex]\[ x = \frac{-3 \pm \sqrt{73}}{-16} \][/tex]
This gives us two roots:
[tex]\[ x_1 = \frac{-3 + \sqrt{73}}{-16} \approx -0.3465 \][/tex]
[tex]\[ x_2 = \frac{-3 - \sqrt{73}}{-16} \approx 0.7215 \][/tex]
### Summary:
The provided solution contains mistakes in both the discriminant calculation and the final solution steps. The correct discriminant is [tex]\(73\)[/tex], and the correct roots of the quadratic equation [tex]\(-8x^2 + 3x + 2 = 0\)[/tex] are approximately [tex]\(-0.3465\)[/tex] and [tex]\(0.7215\)[/tex].
### Step-by-Step Review:
1. Initial Equation:
[tex]\[ 9x + 2 = 8x^2 + 6x \][/tex]
2. Rearrange into Standard Form:
Subtract [tex]\(9x + 2\)[/tex] from both sides:
[tex]\[ 0 = 8x^2 + 6x - 9x - 2 \][/tex]
Simplify:
[tex]\[ 0 = 8x^2 - 3x - 2 \][/tex]
Rearrange to match standard quadratic form [tex]\(Ax^2 + Bx + C = 0\)[/tex]:
[tex]\[ -8x^2 + 3x + 2 = 0 \][/tex]
3. Identify Coefficients:
For the equation [tex]\(-8x^2 + 3x + 2 = 0\)[/tex], the coefficients are:
[tex]\[ A = -8, \quad B = 3, \quad C = 2 \][/tex]
4. Calculate the Discriminant:
The discriminant [tex]\(D\)[/tex] is given by the formula [tex]\(D = B^2 - 4AC\)[/tex]:
[tex]\[ D = 3^2 - 4(-8)(2) \][/tex]
Calculate the terms:
[tex]\[ D = 9 - (-64) \][/tex]
Simplify:
[tex]\[ D = 9 + 64 = 73 \][/tex]
5. Review the Provided Solution:
Let's look at the discriminant step in the provided solution:
[tex]\[ x = \frac{-3 \pm \sqrt{9 - (64)}}{-16} \][/tex]
This incorrectly sets the discriminant to:
[tex]\[ 9 - 64 = -55 \][/tex]
Then it states:
[tex]\[ x = \frac{-3 \pm \sqrt{-55i}}{-16} \text{,} \][/tex]
which is incorrect because the discriminant calculation steps should be:
[tex]\[ x = \frac{-3 \pm \sqrt{9 + 64}}{-16} = \frac{-3 \pm \sqrt{73}}{-16} \][/tex]
### Final Roots Calculation:
With the corrected discriminant [tex]\(D = 73\)[/tex]:
[tex]\[ x = \frac{-3 \pm \sqrt{73}}{-16} \][/tex]
This gives us two roots:
[tex]\[ x_1 = \frac{-3 + \sqrt{73}}{-16} \approx -0.3465 \][/tex]
[tex]\[ x_2 = \frac{-3 - \sqrt{73}}{-16} \approx 0.7215 \][/tex]
### Summary:
The provided solution contains mistakes in both the discriminant calculation and the final solution steps. The correct discriminant is [tex]\(73\)[/tex], and the correct roots of the quadratic equation [tex]\(-8x^2 + 3x + 2 = 0\)[/tex] are approximately [tex]\(-0.3465\)[/tex] and [tex]\(0.7215\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.