Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's determine the given function [tex]\( \tan(78^\circ) \)[/tex] using its cofunction.
1. Understanding Cofunctions:
The cofunction identity for tangent and cotangent tells us that:
[tex]\[ \tan(90^\circ - \theta) = \cot(\theta) \][/tex]
2. Apply the Cofunction Identity to Our Angle:
Here, we are given [tex]\( 78^\circ \)[/tex]. We will rewrite this in terms of its cofunction:
[tex]\[ \tan(78^\circ) \][/tex]
We recognize that:
[tex]\[ \tan(78^\circ) = \tan(90^\circ - 12^\circ) \][/tex]
3. Express in Terms of Cotangent:
According to the cofunction identity, we can rewrite [tex]\( \tan(90^\circ - 12^\circ) \)[/tex] as:
[tex]\[ \tan(90^\circ - 12^\circ) = \cot(12^\circ) \][/tex]
4. Conclusion:
Therefore:
[tex]\[ \tan(78^\circ) = \cot(12^\circ) \][/tex]
As a result of these steps and converting accordingly:
- [tex]\( \tan(78^\circ) \)[/tex] is calculated to be approximately [tex]\( 4.704630109478451 \)[/tex]
- [tex]\( \cot(12^\circ) \)[/tex] is also calculated to be approximately [tex]\( 4.704630109478455 \)[/tex]
Both values are nearly identical, substantiating that:
[tex]\[ \tan(78^\circ) = \cot(12^\circ) \][/tex]
Thus, we have successfully expressed [tex]\( \tan(78^\circ) \)[/tex] in terms of its cofunction, as [tex]\( \cot(12^\circ) \)[/tex].
1. Understanding Cofunctions:
The cofunction identity for tangent and cotangent tells us that:
[tex]\[ \tan(90^\circ - \theta) = \cot(\theta) \][/tex]
2. Apply the Cofunction Identity to Our Angle:
Here, we are given [tex]\( 78^\circ \)[/tex]. We will rewrite this in terms of its cofunction:
[tex]\[ \tan(78^\circ) \][/tex]
We recognize that:
[tex]\[ \tan(78^\circ) = \tan(90^\circ - 12^\circ) \][/tex]
3. Express in Terms of Cotangent:
According to the cofunction identity, we can rewrite [tex]\( \tan(90^\circ - 12^\circ) \)[/tex] as:
[tex]\[ \tan(90^\circ - 12^\circ) = \cot(12^\circ) \][/tex]
4. Conclusion:
Therefore:
[tex]\[ \tan(78^\circ) = \cot(12^\circ) \][/tex]
As a result of these steps and converting accordingly:
- [tex]\( \tan(78^\circ) \)[/tex] is calculated to be approximately [tex]\( 4.704630109478451 \)[/tex]
- [tex]\( \cot(12^\circ) \)[/tex] is also calculated to be approximately [tex]\( 4.704630109478455 \)[/tex]
Both values are nearly identical, substantiating that:
[tex]\[ \tan(78^\circ) = \cot(12^\circ) \][/tex]
Thus, we have successfully expressed [tex]\( \tan(78^\circ) \)[/tex] in terms of its cofunction, as [tex]\( \cot(12^\circ) \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.