Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's determine the given function [tex]\( \tan(78^\circ) \)[/tex] using its cofunction.
1. Understanding Cofunctions:
The cofunction identity for tangent and cotangent tells us that:
[tex]\[ \tan(90^\circ - \theta) = \cot(\theta) \][/tex]
2. Apply the Cofunction Identity to Our Angle:
Here, we are given [tex]\( 78^\circ \)[/tex]. We will rewrite this in terms of its cofunction:
[tex]\[ \tan(78^\circ) \][/tex]
We recognize that:
[tex]\[ \tan(78^\circ) = \tan(90^\circ - 12^\circ) \][/tex]
3. Express in Terms of Cotangent:
According to the cofunction identity, we can rewrite [tex]\( \tan(90^\circ - 12^\circ) \)[/tex] as:
[tex]\[ \tan(90^\circ - 12^\circ) = \cot(12^\circ) \][/tex]
4. Conclusion:
Therefore:
[tex]\[ \tan(78^\circ) = \cot(12^\circ) \][/tex]
As a result of these steps and converting accordingly:
- [tex]\( \tan(78^\circ) \)[/tex] is calculated to be approximately [tex]\( 4.704630109478451 \)[/tex]
- [tex]\( \cot(12^\circ) \)[/tex] is also calculated to be approximately [tex]\( 4.704630109478455 \)[/tex]
Both values are nearly identical, substantiating that:
[tex]\[ \tan(78^\circ) = \cot(12^\circ) \][/tex]
Thus, we have successfully expressed [tex]\( \tan(78^\circ) \)[/tex] in terms of its cofunction, as [tex]\( \cot(12^\circ) \)[/tex].
1. Understanding Cofunctions:
The cofunction identity for tangent and cotangent tells us that:
[tex]\[ \tan(90^\circ - \theta) = \cot(\theta) \][/tex]
2. Apply the Cofunction Identity to Our Angle:
Here, we are given [tex]\( 78^\circ \)[/tex]. We will rewrite this in terms of its cofunction:
[tex]\[ \tan(78^\circ) \][/tex]
We recognize that:
[tex]\[ \tan(78^\circ) = \tan(90^\circ - 12^\circ) \][/tex]
3. Express in Terms of Cotangent:
According to the cofunction identity, we can rewrite [tex]\( \tan(90^\circ - 12^\circ) \)[/tex] as:
[tex]\[ \tan(90^\circ - 12^\circ) = \cot(12^\circ) \][/tex]
4. Conclusion:
Therefore:
[tex]\[ \tan(78^\circ) = \cot(12^\circ) \][/tex]
As a result of these steps and converting accordingly:
- [tex]\( \tan(78^\circ) \)[/tex] is calculated to be approximately [tex]\( 4.704630109478451 \)[/tex]
- [tex]\( \cot(12^\circ) \)[/tex] is also calculated to be approximately [tex]\( 4.704630109478455 \)[/tex]
Both values are nearly identical, substantiating that:
[tex]\[ \tan(78^\circ) = \cot(12^\circ) \][/tex]
Thus, we have successfully expressed [tex]\( \tan(78^\circ) \)[/tex] in terms of its cofunction, as [tex]\( \cot(12^\circ) \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.