Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's determine the given function [tex]\( \tan(78^\circ) \)[/tex] using its cofunction.
1. Understanding Cofunctions:
The cofunction identity for tangent and cotangent tells us that:
[tex]\[ \tan(90^\circ - \theta) = \cot(\theta) \][/tex]
2. Apply the Cofunction Identity to Our Angle:
Here, we are given [tex]\( 78^\circ \)[/tex]. We will rewrite this in terms of its cofunction:
[tex]\[ \tan(78^\circ) \][/tex]
We recognize that:
[tex]\[ \tan(78^\circ) = \tan(90^\circ - 12^\circ) \][/tex]
3. Express in Terms of Cotangent:
According to the cofunction identity, we can rewrite [tex]\( \tan(90^\circ - 12^\circ) \)[/tex] as:
[tex]\[ \tan(90^\circ - 12^\circ) = \cot(12^\circ) \][/tex]
4. Conclusion:
Therefore:
[tex]\[ \tan(78^\circ) = \cot(12^\circ) \][/tex]
As a result of these steps and converting accordingly:
- [tex]\( \tan(78^\circ) \)[/tex] is calculated to be approximately [tex]\( 4.704630109478451 \)[/tex]
- [tex]\( \cot(12^\circ) \)[/tex] is also calculated to be approximately [tex]\( 4.704630109478455 \)[/tex]
Both values are nearly identical, substantiating that:
[tex]\[ \tan(78^\circ) = \cot(12^\circ) \][/tex]
Thus, we have successfully expressed [tex]\( \tan(78^\circ) \)[/tex] in terms of its cofunction, as [tex]\( \cot(12^\circ) \)[/tex].
1. Understanding Cofunctions:
The cofunction identity for tangent and cotangent tells us that:
[tex]\[ \tan(90^\circ - \theta) = \cot(\theta) \][/tex]
2. Apply the Cofunction Identity to Our Angle:
Here, we are given [tex]\( 78^\circ \)[/tex]. We will rewrite this in terms of its cofunction:
[tex]\[ \tan(78^\circ) \][/tex]
We recognize that:
[tex]\[ \tan(78^\circ) = \tan(90^\circ - 12^\circ) \][/tex]
3. Express in Terms of Cotangent:
According to the cofunction identity, we can rewrite [tex]\( \tan(90^\circ - 12^\circ) \)[/tex] as:
[tex]\[ \tan(90^\circ - 12^\circ) = \cot(12^\circ) \][/tex]
4. Conclusion:
Therefore:
[tex]\[ \tan(78^\circ) = \cot(12^\circ) \][/tex]
As a result of these steps and converting accordingly:
- [tex]\( \tan(78^\circ) \)[/tex] is calculated to be approximately [tex]\( 4.704630109478451 \)[/tex]
- [tex]\( \cot(12^\circ) \)[/tex] is also calculated to be approximately [tex]\( 4.704630109478455 \)[/tex]
Both values are nearly identical, substantiating that:
[tex]\[ \tan(78^\circ) = \cot(12^\circ) \][/tex]
Thus, we have successfully expressed [tex]\( \tan(78^\circ) \)[/tex] in terms of its cofunction, as [tex]\( \cot(12^\circ) \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.