Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To rewrite [tex]\(\sin \left(\frac{5 \pi}{12}\right)\)[/tex] in terms of its cofunction, we can use the cofunction identity for sine. The cofunction identity is:
[tex]\[ \sin(x) = \cos\left(\frac{\pi}{2} - x\right) \][/tex]
We will apply this identity to the given angle [tex]\(\frac{5 \pi}{12}\)[/tex].
1. Identify [tex]\(x\)[/tex]:
[tex]\[ x = \frac{5 \pi}{12} \][/tex]
2. Apply the cofunction identity:
[tex]\[ \sin \left(\frac{5 \pi}{12}\right) = \cos \left(\frac{\pi}{2} - \frac{5 \pi}{12}\right) \][/tex]
3. Simplify the expression inside the cosine function:
[tex]\[ \frac{\pi}{2} = \frac{6 \pi}{12} \text{ (since } \frac{\pi}{2} = \frac{6 \pi}{12} \text{)} \][/tex]
[tex]\[ \cos \left(\frac{\pi}{2} - \frac{5 \pi}{12}\right) = \cos \left(\frac{6 \pi}{12} - \frac{5 \pi}{12}\right) \][/tex]
4. Perform the subtraction:
[tex]\[ \frac{6 \pi}{12} - \frac{5 \pi}{12} = \frac{\pi}{12} \][/tex]
Therefore:
[tex]\[ \sin \left(\frac{5 \pi}{12}\right) = \cos \left(\frac{\pi}{12}\right) \][/tex]
Now, evaluating [tex]\(\cos \left(\frac{\pi}{12}\right)\)[/tex], we find that its value is approximately:
[tex]\[ \cos \left(\frac{\pi}{12}\right) \approx 0.9659258262890683 \][/tex]
Hence, the function rewritten in terms of its cofunction and evaluated is:
[tex]\[ \boxed{0.9659258262890683} \][/tex]
[tex]\[ \sin(x) = \cos\left(\frac{\pi}{2} - x\right) \][/tex]
We will apply this identity to the given angle [tex]\(\frac{5 \pi}{12}\)[/tex].
1. Identify [tex]\(x\)[/tex]:
[tex]\[ x = \frac{5 \pi}{12} \][/tex]
2. Apply the cofunction identity:
[tex]\[ \sin \left(\frac{5 \pi}{12}\right) = \cos \left(\frac{\pi}{2} - \frac{5 \pi}{12}\right) \][/tex]
3. Simplify the expression inside the cosine function:
[tex]\[ \frac{\pi}{2} = \frac{6 \pi}{12} \text{ (since } \frac{\pi}{2} = \frac{6 \pi}{12} \text{)} \][/tex]
[tex]\[ \cos \left(\frac{\pi}{2} - \frac{5 \pi}{12}\right) = \cos \left(\frac{6 \pi}{12} - \frac{5 \pi}{12}\right) \][/tex]
4. Perform the subtraction:
[tex]\[ \frac{6 \pi}{12} - \frac{5 \pi}{12} = \frac{\pi}{12} \][/tex]
Therefore:
[tex]\[ \sin \left(\frac{5 \pi}{12}\right) = \cos \left(\frac{\pi}{12}\right) \][/tex]
Now, evaluating [tex]\(\cos \left(\frac{\pi}{12}\right)\)[/tex], we find that its value is approximately:
[tex]\[ \cos \left(\frac{\pi}{12}\right) \approx 0.9659258262890683 \][/tex]
Hence, the function rewritten in terms of its cofunction and evaluated is:
[tex]\[ \boxed{0.9659258262890683} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.